This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the U.S. Energy Information Administration (EIA), the U.S. Department of Transportation (USDOT), the U.S. Department of Energy (USDOE), and the U.S. Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the U.S. water footprint (F) and in the observed pattern of virtual water flows. The median water footprint (FCUMed) of the U.S. is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (F'CUMed) of the U.S. is 589 m3 capita−1 (F'Withdrawal: 1298 m3 capita−1; F'CUMax: 720 m3 capita−1; F'CUMin: 198 m3 capita−1). The U.S. hydro-economic network is centered on cities and is dominated by the local and regional scales. Approximately (58 %) of U.S. water consumption is for the direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total U.S. water footprint, and is dominated by irrigated agriculture in the Western U.S. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 % to over 99 % depending on location. Harmonized region-specific, economic sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere.
more »
« less
The genetic mapping and phenotypic analysis of PatroninF.1.1 in Drosophila melanogaster
The multi-institutional Fly-CURE project is an undergraduate genetics research initiative centered on Drosophila melanogaster as a model organism. This study aimed to characterize and map mutations discovered through a Flp/FRT EMS screen to investigate complex interactions among genes associated with cell division, growth, and apoptosis leading to abnormal cell proliferation. The F.1.1 mosaic phenotype resulted in a rough eye phenotype with an overall decrease in representation of mutant tissue. To genetically map the location of the F.1.1 mutation, flies with genotype FRT42D,F.1.1,Dark82/CyO were crossed with the Bloomington 2R Deficiency Kit. The resultant F1 progeny were analyzed to pinpoint mapping deficiencies. The genomic region containing the Patronin gene was identified and sequencing confirmed the novel allele of PatroninF.1.1.
more »
« less
- PAR ID:
- 10630841
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- microPublication Biology
- Date Published:
- Journal Name:
- microPublication biology
- Volume:
- 2025
- ISSN:
- 2578-9430
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cell spreading and migration play central roles in many physiological and pathophysiological processes. We have previously shown that MFN2 regulates the migration of human neutrophil-like cells via suppressing Rac activation. Here, we show that in mouse embryonic fibroblasts, MFN2 suppresses RhoA activation and supports cell polarization. After initial spreading, the wild-type cells polarize and migrate, whereas theMfn2-/-cells maintain a circular shape. Increased cytosolic Ca2+resulting from the loss of Mfn2 is directly responsible for this phenotype, which can be rescued by expressing an artificial tether to bring mitochondria and endoplasmic reticulum to close vicinity. Elevated cytosolic Ca2+activates Ca2+/calmodulin-dependent protein kinase II, RhoA, and myosin light-chain kinase, causing an overactivation of nonmuscle myosin II, leading to a formation of a prominent F-actin ring at the cell periphery and increased cell contractility. The peripheral actin band alters cell physics and is dependent on substrate rigidity. Our results provide a novel molecular basis to understand how MFN2 regulates distinct signaling pathways in different cells and tissue environments, which is instrumental in understanding and treating MFN2-related diseases.more » « less
-
Abstract Studies of protein structure and dynamics are usually carried out in dilute buffer solutions, conditions that differ significantly from the crowded environment in the cell. The double electron‐electron resonance (DEER) technique can track proteins’ conformations in the cell by providing distance distributions between two attached spin labels. This technique, however, cannot access distances below 1.8 nm. Here, we show that GdIII‐19F Mims electron‐nuclear double resonance (ENDOR) measurements can cover part of this short range. Low temperature solution and in‐cell ENDOR measurements, complemented with room temperature solution and in‐cell GdIII‐19F PRE (paramagnetic relaxation enhancement) NMR measurements, were performed on fluorinated GB1 and ubiquitin (Ub), spin‐labeled with rigid GdIIItags. The proteins were delivered into human cells via electroporation. The solution and in‐cell derived GdIII‐19F distances were essentially identical and lie in the 1–1.5 nm range revealing that both, GB1 and Ub, retained their overall structure in the GdIIIand19F regions in the cell.more » « less
-
Abstract HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirm the latency reversal properties of in vivo TGF-β blockade, decrease viral reservoirs and stimulate immune responses. Treatment of eight female, SIV-infected macaques on ART with four 2-weeks cycles of galunisertib leads to viral reactivation as indicated by plasma viral load and immunoPET/CT with a64Cu-DOTA-F(ab’)2-p7D3-probe. Post-galunisertib, lymph nodes, gut and PBMC exhibit lower cell-associated (CA-)SIV DNA and lower intact pro-virus (PBMC). Galunisertib does not lead to systemic increase in inflammatory cytokines. High-dimensional cytometry, bulk, and single-cell (sc)RNAseq reveal a galunisertib-driven shift toward an effector phenotype in T and NK cells characterized by a progressive downregulation in TCF1. In summary, we demonstrate that galunisertib, a clinical stage TGF-β inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.more » « less
-
Obtaining atomic-level information on components in the cell is a major focus in structural biology. Elucidating specific structural and dynamic features of proteins and their interactions in the cellular context is crucial for understanding cellular processes. We introduce19F dynamic nuclear polarization (DNP) combined with fast magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy as a powerful technique to study proteins in mammalian cells. We demonstrate our approach on the severe acute respiratory syndrome coronavirus 2 5F-Trp-NNTDprotein, electroporated into human cells. DNP signal enhancements of 30- to 40-fold were observed, translating into over 1000-fold experimental time savings. High signal-to-noise ratio spectra were acquired on nanomole quantities of a protein in cells in minutes. 2D19F-19F dipolar correlation spectra with remarkable sensitivity and resolution were obtained, exhibiting19F-19F cross peaks associated with fluorine atoms as far as ~10 angstroms apart. This work paves the way for19F DNP-enhanced MAS NMR applications in cells for probing protein structure, dynamics, and ligand interactions.more » « less
An official website of the United States government

