skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Sharp Hadamard Local Well-Posedness, Enhanced Uniqueness and Pointwise Continuation Criterion for the Incompressible Free Boundary Euler Equations
Abstract We provide a complete local well-posedness theory inHsbased Sobolev spaces for the free boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the$$C^{1,\frac{1}{2}}$$regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures, in a suitable sense, the distance between two solutions (even when defined on different domains) and we show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v) Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the velocity is in$$L_T^1W^{1,\infty}$$and the free surface is in$$L_T^1C^{1,\frac{1}{2}}$$, which is at the same level as the Beale-Kato-Majda criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions. Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid domains.  more » « less
Award ID(s):
1845037
PAR ID:
10630889
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Annals of PDE
Date Published:
Journal Name:
Annals of PDE
Volume:
11
Issue:
1
ISSN:
2524-5317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the velocity is in$$L^1_t Lip$$ L t 1 L i p and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors on corresponding non relativistic problem. All our results are valid for a general equation of state$$p(\varrho )= \varrho ^\gamma $$ p ( ϱ ) = ϱ γ ,$$\gamma > 1$$ γ > 1
    more » « less
  2. Abstract We consider the Cauchy problem for the logarithmically singular surface quasi-geostrophic (SQG) equation, introduced by Ohkitani,$$\begin{aligned} \begin{aligned} \partial _t \theta - \nabla ^\perp \log (10+(-\Delta )^{\frac{1}{2}})\theta \cdot \nabla \theta = 0, \end{aligned} \end{aligned}$$ t θ - log ( 10 + ( - Δ ) 1 2 ) θ · θ = 0 , and establish local existence and uniqueness of smooth solutions in the scale of Sobolev spaces with exponent decreasing with time. Such a decrease of the Sobolev exponent is necessary, as we have shown in the companion paper (Chae et al. in Illposedness via degenerate dispersion for generalized surface quasi-geostrophic equations with singular velocities,arXiv:2308.02120) that the problem is strongly ill-posed in any fixed Sobolev spaces. The time dependence of the Sobolev exponent can be removed when there is a dissipation term strictly stronger than log. These results improve wellposedness statements by Chae et al. (Comm Pure Appl Math 65(8):1037–1066, 2012). This well-posedness result can be applied to describe the long-time dynamics of the$$\delta $$ δ -SQG equations, defined by$$\begin{aligned} \begin{aligned} \partial _t \theta + \nabla ^\perp (10+(-\Delta )^{\frac{1}{2}})^{-\delta }\theta \cdot \nabla \theta = 0, \end{aligned} \end{aligned}$$ t θ + ( 10 + ( - Δ ) 1 2 ) - δ θ · θ = 0 , for all sufficiently small$$\delta >0$$ δ > 0 depending on the size of the initial data. For the same range of$$\delta $$ δ , we establish global well-posedness of smooth solutions to the dissipative SQG equations. 
    more » « less
  3. We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the \begin{document}$$ S_p $$\end{document} estimate of [7], we prove regularity in the kinetic Sobolev spaces \begin{document}$$ S_p $$\end{document} and anisotropic Hölder spaces for such weak solutions. Such \begin{document}$$ S_p $$\end{document} regularity leads to the uniqueness of weak solutions. 
    more » « less
  4. Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${{\mathbb {R}}}^{d+2}$$ R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\ge 4$$ d 4
    more » « less
  5. Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${\mathbb {R}}^{d+2}$$ R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors introduced a harmonic/Coulomb gauge formulation of the problem, and used it to prove small data local well-posedness in dimensions$$d \geqq 4$$ d 4 . In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\geqq 2$$ d 2 . This is achieved by introducing a new, heat gauge formulation of the equations, which turns out to be more robust in low dimensions. 
    more » « less