The Toarcian Oceanic Anoxic Event (T-OAE; ~183 Mya) was a globally significant carbon-cycle perturbation linked to widespread deposition of organic-rich sediments, massive volcanic CO2release, marine faunal extinction, sea-level rise, a crisis in carbonate production related to ocean acidification, and elevated seawater temperatures. Despite recognition of the T-OAE as a potential analog for future ocean deoxygenation, current knowledge on the severity of global ocean anoxia is limited largely to studies of the trace element and isotopic composition of black shales, which are commonly affected by local processes. Here, we present the first carbonate-based uranium isotope (δ238U) record of the T-OAE from open marine platform limestones of the southeastern Tethys Ocean as a proxy for global seawater redox conditions. A significant negative δ238U excursion (~0.4‰) is recorded just prior to the onset of the negative carbon isotope excursion comprised within the T-OAE, followed by a long-lived recovery of δ238U values, thus confirming that the T-OAE represents a global expansion of marine anoxia. Using a Bayesian inverse isotopic mass balance model, we estimate that anoxic waters covered ~6 to 8% of the global seafloor during the peak of the T-OAE, which represents 28 to 38 times the extent of anoxia in the modern ocean. These data, combined with δ238U-based estimates of seafloor anoxic area for other CO2-driven Phanerozoic OAEs, suggest a common response of ocean anoxia to carbon release, thus improving prediction of future anthropogenically induced ocean deoxygenation.
more »
« less
Millennial-timescale thermogenic CO2 release preceding the Paleocene-Eocene Thermal Maximum
Abstract Geologic records support a short-lived carbon release, known as the pre-onset excursion (POE), shortly before the Paleocene-Eocene Thermal Maximum (PETM; ~ 56 Ma). However, the source and pace of the POE carbon release and its relationship to the PETM remain unresolved. Here we show a high-temporal-resolution stratigraphic record spanning the POE and PETM from the eastern Tethys Ocean that documents the evolution of surface ocean carbon cycle, redox and eutrophication, confirming the global nature of the POE. Biomarkers extracted from the sedimentary record indicate a smaller environmental perturbation during the POE than that during the PETM in the eastern Tethys Ocean. Earth system modeling constrained by observed δ13C and pH data indicates that the POE was driven by a largely thermogenic CO2source, likely associated with sill intrusions prior to the main eruption phase of the North Atlantic Igneous Province and possibly biogeochemical feedbacks involving the release of biogenic methane.
more »
« less
- PAR ID:
- 10630989
- Publisher / Repository:
- Springer Nature Limited
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Paleocene‐Eocene Thermal Maximum (PETM) is the most pronounced global warming event of the early Paleogene related to atmospheric CO2increases. It is characterized by negative δ18O and δ13C excursions recorded in sedimentary archives and a transient disruption of the marine biosphere. Sites from the U.S. Atlantic Coastal Plain show an additional small, but distinct δ13C excursion below the onset of the PETM, coined the “pre‐onset excursion” (POE), mimicking the PETM‐forced environmental perturbations. This study focuses on the South Dover Bridge core in Maryland, where the Paleocene‐Eocene transition is stratigraphically constrained by calcareous nannoplankton and stable isotope data, and in which the POE is well‐expressed. The site was situated in a middle neritic marine shelf setting near a major outflow of the paleo‐Potomac River system. We generated high‐resolution benthic foraminiferal assemblage, stable isotope, trace‐metal, grain‐size and clay mineralogy data. The resulting stratigraphic subdivision of this Paleocene‐Eocene transition is placed within a depth transect across the paleoshelf, highlighting that the PETM sequence is relatively expanded. The geochemical records provide detailed insights into the paleoenvironment, developing from a well‐oxygenated water column in latest Paleocene to a PETM‐ecosystem under severe biotic stress‐conditions, with shifts in food supply and temperature, and under dysoxic bottom waters in a more river‐dominated setting. Environmental changes started in the latest Paleocene and culminated atthe onset of the PETM, hinting to an intensifying trigger rather than to an instantaneous event at the Paleocene‐Eocene boundary toppling the global system.more » « less
-
Abstract The ocean carbon reservoir controls atmospheric carbon dioxide (CO2) on millennial timescales. Radiocarbon (14C) anomalies in eastern North Pacific sediments suggest a significant release of geologic14C‐free carbon at the end of the last ice age but without evidence of ocean acidification. Using inverse carbon cycle modeling optimized with reconstructed atmospheric CO2and14C/C, we develop first‐order constraints on geologic carbon and alkalinity release over the last 17.5 thousand years. We construct scenarios allowing the release of 850–2,400 Pg C, with a maximum release rate of 1.3 Pg C yr−1, all of which require an approximate equimolar alkalinity release. These neutralized carbon addition scenarios have minimal impacts on the simulated marine carbon cycle and atmospheric CO2, thereby demonstrating safe and effective ocean carbon storage. This deglacial phenomenon could serve as a natural analog to the successful implementation of gigaton‐scale ocean alkalinity enhancement, a promising marine carbon dioxide removal method.more » « less
-
Earth surface temperatures warmed by ~5ºC during an ancient (~56 Ma) global warming event referred to as the Paleocene-Eocene thermal maximum (PETM). A hallmark of the PETM is a carbon isotope excursion (CIE) signaling the release of massive amounts of 13C-depleted carbon into the ocean-atmosphere system, but substrate-specific differences in the CIE magnitude are a source of uncertainty for estimating the mass of carbon emitted. Here we report that SIMS-based in situ measurements of d13C in minute (7 um) domains of planktic foraminifer shells (ODP Site 865, central Pacific Ocean) yield a CIE that is ~2‰ larger than that delineated by conventional ‘whole-shell’ d13C values for this same PETM record. SIMS-based measurements on diagenetic crystallites yield d13C values (~2.8‰) that fall between those of pre-CIE and CIE planktic foraminifer shells, indicating that the crystallites are an amalgamated blend of pre-CIE and CIE carbonate. This suggests that diagenesis shifts the whole-shell d13C compositions of pre-CIE and CIE foraminifers found in samples straddling the base of the PETM interval toward the intermediate d13C composition of the crystallites thereby dampening the amplitude of the isotopic excursion. The diagenetic process envisioned would be most consequential for carbonate-rich PETM records that have suffered chemical erosion of pre-CIE carbonate. Given that the domains targeted for SIMS analysis may not be pristinely preserved, we consider the 4.6‰ excursion in our SIMS-based d13C record to be a conservative estimate of the full CIE for surface-ocean dissolved inorganic carbon.more » « less
-
The Paleocene‐Eocene thermal maximum (PETM, 56 Ma) is an ancient global warming event closely coupled to the release of massive amounts of d13C‐depleted carbon into the ocean‐atmosphere system, making it an informative analogue for future climate change. However, uncertainty still exists regarding tropical sea‐surface temperatures (SSTs) in open ocean settings during the PETM. Here, we present the first paired d13C:Mg/Ca record derived in situ from relatively well‐preserved subdomains inside individual planktic foraminifer shells taken from a PETM record recovered in the central Pacific Ocean at Ocean Drilling Program Site 865. The d13C signature of each individual shell was used to confirm calcification during the PETM, thereby reducing the unwanted effects of sediment mixing that secondarily smooth paleoclimate signals constructed with fossil planktic foraminifer shells. This method of “isotopic screening” reveals that shells calcified during the PETM have elevated Mg/Ca ratios reflecting exceptionally warm tropical SSTs (∼33–34°C). The increase in Mg/Ca ratios suggests ∼6°C of warming, which is more congruent with SST estimates derived from organic biomarkers in PETM records at other tropical sites. These extremely warm SSTs exceed the maximum temperature tolerances of modern planktic foraminifers. Important corollaries to the findings of this study are (a) the global signature of PETM warmth was uniformly distributed across different latitudes, (b) our Mg/Ca‐based SST record may not capture peak PETM warming at tropical Site 865 due to the thermally‐induced ecological exclusion of planktic foraminifers, and (c) the record of such transitory ecological exclusion has been obfuscated by post‐depositional sediment mixing at Site 865.more » « less
An official website of the United States government

