We study calibration measures in a sequential prediction setup. In addition to rewarding accurate predictions (completeness) and penalizing incorrect ones (soundness), an important desideratum of calibration measures is truthfulness, a minimal condition for the forecaster not to be incentivized to exploit the system. Formally, a calibration measure is truthful if the forecaster (approximately) minimizes the expected penalty by predicting the conditional expectation of the next outcome, given the prior distribution of outcomes. We conduct a taxonomy of existing calibration measures. Perhaps surprisingly, all of them are far from being truthful. We introduce a new calibration measure termed the Subsampled Smooth Calibration Error (SSCE), which is complete and sound, and under which truthful prediction is optimal up to a constant multiplicative factor. In contrast, under existing calibration measures, there are simple distributions on which a polylogarithmic (or even zero) penalty is achievable, while truthful prediction leads to a polynomial penalty.
more »
« less
This content will become publicly available on June 30, 2026
Truthfulness of Decision-Theoretic Calibration Measures
Calibration measures quantify how much a forecaster’s predictions violate calibration, which requires that forecasts are unbiased conditioning on the forecasted probabilities. Two important desiderata for a calibration measure are its decision-theoretic implications (i.e., downstream decision-makers that best respond to the forecasts are always no-regret) and its truthfulness (i.e., a forecaster approximately minimizes error by always reporting the true probabilities). Existing measures satisfy at most one of the properties, but not both. We introduce a new calibration measure termed subsampled step calibration, StepCEsub, that is both decision-theoretic and truthful. In particular, on any product distribution, StepCEsub is truthful up to an O(1) factor whereas prior decision-theoretic calibration measures suffer from an e−Ω(T)–Ω(T−−√) truthfulness gap. Moreover, in any smoothed setting where the conditional probability of each event is perturbed by a noise of magnitude c>0, StepCEsub is truthful up to an O(log(1/c)−−−−−−−√) factor, while prior decision-theoretic measures have an e−Ω(T)–Ω(T1/3) truthfulness gap. We also prove a general impossibility result for truthful decision-theoretic forecasting: any complete and decision-theoretic calibration measure must be discontinuous and non-truthful in the non-smoothed setting.
more »
« less
- Award ID(s):
- 2022448
- PAR ID:
- 10631065
- Publisher / Repository:
- 38th Annual Conference on Learning Theory (COLT 2025)
- Date Published:
- Format(s):
- Medium: X
- Location:
- Lyon, France
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study calibration measures in a sequential prediction setup. In addition to rewarding accurate predictions (completeness) and penalizing incorrect ones (soundness), an important desideratum of calibration measures is truthfulness, a minimal condition for the forecaster not to be incentivized to exploit the system. Formally, a calibration measure is truthful if the forecaster (approximately) minimizes the expected penalty by predicting the conditional expectation of the next outcome, given the prior distribution of outcomes. We conduct a taxonomy of existing calibration measures. Perhaps surprisingly, all of them are far from being truthful. We introduce a new calibration measure termed the Subsampled Smooth Calibration Error (SSCE), which is complete and sound, and under which truthful prediction is optimal up to a constant multiplicative factor. In contrast, under existing calibration measures, there are simple distributions on which a polylogarithmic (or even zero) penalty is achievable, while truthful prediction leads to a polynomial penalty.more » « less
-
null (Ed.)Peer prediction mechanisms incentivize agents to truthfully report their signals even in the absence of verification by comparing agents’ reports with those of their peers. In the detail-free multi-task setting, agents are asked to respond to multiple independent and identically distributed tasks, and the mechanism does not know the prior distribution of agents’ signals. The goal is to provide an epsilon-strongly truthful mechanism where truth-telling rewards agents “strictly” more than any other strategy profile (with epsilon additive error) even for heterogeneous agents, and to do so while requiring as few tasks as possible. We design a family of mechanisms with a scoring function that maps a pair of reports to a score. The mechanism is strongly truthful if the scoring function is “prior ideal”. Moreover, the mechanism is epsilon-strongly truthful as long as the scoring function used is sufficiently close to the ideal scoring function. This reduces the above mechanism design problem to a learning problem – specifically learning an ideal scoring function. Because learning the prior distribution is sufficient (but not necessary) to learn the scoring function, we can apply standard learning theory techniques that leverage side information about the prior (e.g., that it is close to some parametric model). Furthermore, we derive a variational representation of an ideal scoring function and reduce the learning problem into an empirical risk minimization. We leverage this reduction to obtain very general results for peer prediction in the multi-task setting. Specifically, Sample Complexity. We show how to derive good bounds on the number of tasks required for different types of priors–in some cases exponentially improving previous results. In particular, we can upper bound the required number of tasks for parametric models with bounded learning complexity. Furthermore, our reduction applies to myriad continuous signal space settings. To the best of our knowledge, this is the first peer-prediction mechanism on continuous signals designed for the multi-task setting. Connection to Machine Learning. We show how to turn a soft-predictor of an agent’s signals (given the other agents’ signals) into a mechanism. This allows the practical use of machine learning algorithms that give good results even when many agents provide noisy information. Stronger Properties. In the finite setting, we obtain -strongly truthful mechanisms for any stochastically relevant prior. Prior works either only apply to more restrictive settings, or achieve a weaker notion of truthfulness (informed truthfulness).more » « less
-
null (Ed.)Motivated by kidney exchange, we study the following mechanism-design problem: On a directed graph (of transplant compatibilities among patient--donor pairs), the mechanism must select a simple path (a chain of transplantations) starting at a distinguished vertex (an altruistic donor) such that the total length of this path is as large as possible (a maximum number of patients receive a kidney). However, the mechanism does not have direct access to the graph. Instead, the vertices are partitioned over multiple players (hospitals), and each player reports a subset of her vertices to the mechanism. In particular, a player may strategically omit vertices to increase how many of her vertices lie on the path returned by the mechanism. Our objective is to find mechanisms that limit incentives for such manipulation while producing long paths. Unfortunately, in worst-case instances, competing with the overall longest path is impossible while incentivizing (approximate) truthfulness, i.e., requiring that hiding nodes cannot increase a player's utility by more than a factor of 1 + o(1). We therefore adopt a semi-random model where o(n) random edges are added to worst-case instances. While it remains impossible for truthful mechanisms to compete with the overall longest path, we give a truthful mechanism that competes with a weaker but non-trivial benchmark: the length of any path whose subpaths within each player have a minimum average length. In fact, our mechanism satisfies even a stronger notion of truthfulness, which we call matching-time incentive compatibility. This notion of truthfulness requires that each player not only reports her nodes truthfully but also does not stop the returned path at any of her nodes in order to divert it to a continuation inside her own subgraph.more » « less
-
We study the problem of making calibrated probabilistic forecasts for a binary sequence generated by an adversarial nature. Following the seminal paper of Foster and Vohra (1998), nature is often modeled as an adaptive adversary who sees all activity of the forecaster except the randomization that the forecaster may deploy. A number of papers have proposed randomized forecasting strategies that achieve an ϵ-calibration error rate of O(1/sqrt T), which we prove is tight in general. On the other hand, it is well known that it is not possible to be calibrated without randomization, or if nature also sees the forecaster's randomization; in both cases the calibration error could be Ω(1). Inspired by the equally seminal works on the "power of two choices" and imprecise probability theory, we study a small variant of the standard online calibration problem. The adversary gives the forecaster the option of making two nearby probabilistic forecasts, or equivalently an interval forecast of small width, and the endpoint closest to the revealed outcome is used to judge calibration. This power of two choices, or imprecise forecast, accords the forecaster with significant power -- we show that a faster ϵ-calibration rate of O(1/T) can be achieved even without deploying any randomization.more » « less
An official website of the United States government
