Abstract Zero‐dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4PbMn0.69Sn0.31Br8, in which the organic cationN‐benzylhexamethylenetetrammonium (HMTA+, C13H19N4+) cocrystallizes with PbBr42−, MnBr42−, and SnBr42−. The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single‐crystalline “host–guest” system to exhibit emissions from multiple “guest” metal halide species simultaneously. The combination of these emissions led to near‐perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm‐ to cool‐white emissions could be generated by controlling the excitation wavelength.
more »
« less
This content will become publicly available on June 5, 2026
Ensemble emission of isolated organic chromophores incorporated into an organometallic single crystal
Abstract Molecular quantum emitters are becoming increasingly important in quantum information and communication. As a stepping stone towards a single-molecule quantum system, the collective emission from the ensemble of isolated organic chromophores, randomly and sparsely incorporated into an organometallic host crystal, is characterized by Raman and temperature-dependent photoluminescence spectroscopies. The tetracene or rubrene guest chromophores are deposited at very low densities when the ferrocene host is grown in a crystalline form, so that each of the chromophores is well isolated by its organometallic molecular neighbors. The ensemble emission of the chromophores is compared to that of the crystalline or dissolved forms to identify its unique spectral features. The enhanced quantum yield and reduced spectral linewidth with a significant blue-shift in photoluminescence suggest that ferrocene is a novel type of host matrix, maximizing the ability of the tetracene guest to act as a well-isolated quantum entity, while suppressing unwanted environmental decoherence by confining it within the ferromagnetic (organometallic) host material.
more »
« less
- Award ID(s):
- 2347586
- PAR ID:
- 10631156
- Publisher / Repository:
- De Gruyter Brill
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 14
- Issue:
- 14
- ISSN:
- 2192-8614
- Page Range / eLocation ID:
- 2443 to 2451
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The application potential of singlet fission (SF), describing the spontaneous conversion of an excited singlet into two triplets, underlines the necessity to independently control SF rates, energetics and the optical band gap. Heterofission, whereby the singlet splits into triplets on chemically distinct chromophores, is a promising approach to control the above-mentioned parameters, but its details are not yet fully understood. Here, we investigate the photophysics of blends of two prototypical SF chromophores, tetracene (TET) and rubrene (RUB) using time-resolved photoluminescence spectroscopy and time-correlated single photon counting to explore the potential for heterofission in combinations of endothermic SF chromophores.more » « less
-
The adsorption and detection of SO2 using Zr-based MOF, NU-1000 grafted with an organometallic nickel silylphosphine complex ([NiSi]@NU-1000) via post-synthetic modification are reported. [NiSi]@NU-1000 exhibits high stability under dry and wet SO2, with a high cyclability performance. Moreover, fluorescence experiments postulate [NiSi]@NU-1000 as a promising SO2 detector due to its high SO2 selectivity over CO2 and air, showing an evident quenching effect, especially at low SO2 concentrations (0.1 bar of SO2). Time-resolved photoluminescence experiments suggest that host-guest SO2 interactions are associated with the turn-off effectmore » « less
-
Anions play many roles in our environment. Consequently, the development of synthetic receptors capable of targeted anion binding is of ongoing importance. While many such receptors are known, simplified designs and measurement approaches are always beneficial. Herein, we report the synthesis of a non-symmetric aryl-triazole pentad receptor appended with a single ferrocene, its electrochemistry, and the selective binding to dihydrogen phosphate (H2PO4–) anions of its oxidized form over various environmentally prevalent anions (HSO4–, Cl–, NO3–). The receptor was constructed using a modular architecture with simple installation of a ferrocene unit using click chemistry. Electrochemical analysis on the receptor revealed that addition of H2PO4– anion led to a shift in the redox peaks of the receptor (FcP) towards more negative potentials, indicating higher anion affinity was achieved after the ferrocene was oxidized to its cationic form (FcP+). This work verifies prior studies on the efficacy of cationic charge in simpler receptor design for the creation of functional host-guest systems.more » « less
-
Abstract Organic metal halide hybrids (OMHHs) have attracted great research attention owing to their exceptional structure and property tunability. Using appropriate organic and inorganic metal halide components, OMHHs with controlled dimensionalities at the molecular level, from 3D to 2D, 1D, and 0D structures, can be obtained. In 0D OMHHs, anionic metal halide polyhedrons are surrounded and completely isolated by organic cations to form single crystalline “host–guest” structures. These ionically bonded organic–inorganic hybrid systems often exhibit the intrinsic properties of individual metal halide species, for instance, highly efficient Stokes‐shifted broadband emissions. In this progress report, the recent advances in the development and study of luminescent 0D OMHHs are discussed: from synthetic structural control to fundamental understanding of the structure–property relationship and device integration.more » « less
An official website of the United States government
