skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The training process of many deep networks explores the same low-dimensional manifold
We develop information-geometric techniques to analyze the trajectories of the predictions of deep networks during training. By examining the underlying high-dimensional probabilistic models, we reveal that the training process explores an effectively low-dimensional manifold. Networks with a wide range of architectures, sizes, trained using different optimization methods, regularization techniques, data augmentation techniques, and weight initializations lie on the same manifold in the prediction space. We study the details of this manifold to find that networks with different architectures follow distinguishable trajectories, but other factors have a minimal influence; larger networks train along a similar manifold as that of smaller networks, just faster; and networks initialized at very different parts of the prediction space converge to the solution along a similar manifold.  more » « less
Award ID(s):
1753357
PAR ID:
10631361
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
12
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop information geometric techniques to understand the representations learned by deep networks when they are trained on different tasks using supervised, meta-, semi-supervised and con- trastive learning. We shed light on the following phenomena that relate to the structure of the space of tasks: (1) the manifold of probabilistic models trained on different tasks using different represen- tation learning methods is effectively low-dimen- sional; (2) supervised learning on one task results in a surprising amount of progress even on seem- ingly dissimilar tasks; progress on other tasks is larger if the training task has diverse classes; (3) the structure of the space of tasks indicated by our analysis is consistent with parts of the Word- net phylogenetic tree; (4) episodic meta-learning algorithms and supervised learning traverse differ- ent trajectories during training but they fit similar models eventually; (5) contrastive and semi-su- pervised learning methods traverse trajectories similar to those of supervised learning. We use classification tasks constructed from the CIFAR- 10 and Imagenet datasets to study these phenom- ena. Code is available at https://github.com/grasp- lyrl/picture of space of tasks. 
    more » « less
  2. null (Ed.)
    We investigate the ways in which a machine learning architecture known as Reservoir Computing learns concepts such as “similar” and “different” and other relationships between image pairs and generalizes these concepts to previously unseen classes of data. We present two Reservoir Computing architectures, which loosely resemble neural dynamics, and show that a Reservoir Computer (RC) trained to identify relationships between image pairs drawn from a subset of training classes generalizes the learned relationships to substantially different classes unseen during training. We demonstrate our results on the simple MNIST handwritten digit database as well as a database of depth maps of visual scenes in videos taken from a moving camera. We consider image pair relationships such as images from the same class; images from the same class with one image superposed with noise, rotated 90°, blurred, or scaled; images from different classes. We observe that the reservoir acts as a nonlinear filter projecting the input into a higher dimensional space in which the relationships are separable; i.e., the reservoir system state trajectories display different dynamical patterns that reflect the corresponding input pair relationships. Thus, as opposed to training in the entire high-dimensional reservoir space, the RC only needs to learns characteristic features of these dynamical patterns, allowing it to perform well with very few training examples compared with conventional machine learning feed-forward techniques such as deep learning. In generalization tasks, we observe that RCs perform significantly better than state-of-the-art, feed-forward, pair-based architectures such as convolutional and deep Siamese Neural Networks (SNNs). We also show that RCs can not only generalize relationships, but also generalize combinations of relationships, providing robust and effective image pair classification. Our work helps bridge the gap between explainable machine learning with small datasets and biologically inspired analogy-based learning, pointing to new directions in the investigation of learning processes. 
    more » « less
  3. We develop data-driven methods incorporating geometric and topological information to learn parsimonious representations of nonlinear dynamics from observations. The approaches learn nonlinear state-space models of the dynamics for general manifold latent spaces using training strategies related to Variational Autoencoders (VAEs). Our methods are referred to as Geometric Dynamic (GD) Variational Autoencoders (GD-VAEs). We learn encoders and decoders for the system states and evolution based on deep neural network architectures that include general Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and other architectures. Motivated by problems arising in parameterized PDEs and physics, we investigate the performance of our methods on tasks for learning reduced dimensional representations of the nonlinear Burgers Equations, Constrained Mechanical Systems, and spatial fields of Reaction-Diffusion Systems. GD-VAEs provide methods that can be used to obtain representations in manifold latent spaces for diverse learning tasks involving dynamics. 
    more » « less
  4. apid growth of high-dimensional datasets in fields such as single-cell RNA sequencing and spatial genomics has led to unprecedented opportunities for scientific discovery, but it also presents unique computational and statistical challenges. Traditional methods struggle with geometry-aware data generation, interpolation along meaningful trajectories, and transporting populations via feasible paths. To address these issues, we introduce Geometry-Aware Generative Autoencoder (GAGA), a novel framework that combines extensible manifold learning with generative modeling. GAGA constructs a neural network embedding space that respects the intrinsic geometries discovered by manifold learning and learns a novel warped Riemannian metric on the data space. This warped metric is derived from both the points on the data manifold and negative samples off the manifold, allowing it to characterize a meaningful geometry across the entire latent space. Using this metric, GAGA can uniformly sample points on the manifold, generate points along geodesics, and interpolate between populations across the learned manifold. GAGA shows competitive performance in simulated and real-world datasets, including a 30% improvement over SOTA in single-cell population-level trajectory inference. 
    more » « less
  5. Graphs are ubiquitous in social networks and biochemistry, where Graph Neural Networks (GNN) are the state-of-the-art models for prediction. Graphs can be evolving and it is vital to formally model and understand how a trained GNN responds to graph evolution. We propose a smooth parameterization of the GNN predicted distributions using axiomatic attribution, where the distributions are on a low-dimensional manifold within a high-dimensional embedding space. We exploit the differential geometric viewpoint to model distributional evolution as smooth curves on the manifold. We reparameterize families of curves on the manifold and design a convex optimization problem to find a unique curve that concisely approximates the distributional evolution for human interpretation. Extensive experiments on node classification, link prediction, and graph classification tasks with evolving graphs demonstrate the better sparsity, faithfulness, and intuitiveness of the proposed method over the state-of-the-art methods. 
    more » « less