A<sc>bstract</sc> We consider the possibility of indirect detection of dark sector processes by investigating a novel form of interaction between ambient dark matter (DM) and primordial black holes (PBHs). The basic scenario we envisage is that the ambient DM is “dormant”, i.e., it has interactions with the SM, but its potential for an associated SM signal is not realized for various reasons. We argue that the presence of PBHs with active Hawking radiation (independent of any DM considerations) can act as a catalyst in this regard by overcoming the aforementioned bottlenecks. The central point is that PBHs radiate all types of particles, whether in the standard model (SM) or beyond (BSM), which have a mass at or below their Hawking temperature. The emission of such radiation is “democratic” (up to the particle spin), since it is based on a coupling of sorts of gravitational origin. In particular, such shining of (possibly dark sector) particles onto ambient DM can then activate the latter into giving potentially observable SM signals. We illustrate this general mechanism with two specific models. First, we consider asymmetric DM, which is characterized by an absence of ambient anti-DM, and consequently the absence of DM indirect detection signals. In this case, PBHs can “resurrect” such a signal by radiating anti-DM, which then annihilates with ambient DM in order to give SM particles such as photons. In our second example, we consider the PBH emission of dark gauge bosons which can excite ambient DM into a heavier state (which is, again, not ambient otherwise), this heavier state later decays back into DM and photons. Finally, we demonstrate that we can obtain observable signals of these BSM models from asteroid-mass PBHs (Hawking radiating currently with ~$$ \mathcal{O}\left(\textrm{MeV}\right) $$ temperatures) at gamma-ray experiments such as AMEGO-X.
more »
« less
Close encounters of the primordial kind: A new observable for primordial black holes as dark matter
Primordial black holes (PBHs) remain a viable dark matter candidate in the asteroid-mass range. We point out that, in this scenario, the PBH abundance would be large enough for at least one object to cross through the inner Solar System per decade. Since Solar System ephemerides are modeled and measured to extremely high precision, such close encounters could produce detectable perturbations to orbital trajectories with characteristic features. We evaluate this possibility with a suite of simple Solar System simulations, and we argue that the abundance of asteroid-mass PBHs can plausibly be probed by existing and near-future data.
more »
« less
- Award ID(s):
- 2317018
- PAR ID:
- 10631383
- Publisher / Repository:
- Physical Review D
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 6
- ISSN:
- 2470-0010
- Subject(s) / Keyword(s):
- Cosmology Black Holes Detection Asteroids Primordial black holes physics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Context. Asteroid (16) Psyche is the largest M-type asteroid in the main belt and the target of the NASA Psyche mission. It is also the only asteroid of this size ( D > 200 km) known to be metal rich. Although various hypotheses have been proposed to explain the rather unique physical properties of this asteroid, a perfect understanding of its formation and bulk composition is still missing. Aims. We aim to refine the shape and bulk density of (16) Psyche and to perform a thorough analysis of its shape to better constrain possible formation scenarios and the structure of its interior. Methods. We obtained disk-resolved VLT/SPHERE/ZIMPOL images acquired within our ESO large program (ID 199.C-0074), which complement similar data obtained in 2018. Both data sets offer a complete coverage of Psyche’s surface. These images were used to reconstruct the three-dimensional (3D) shape of Psyche with two independent shape modeling algorithms ( MPCD and ADAM ). A shape analysis was subsequently performed, including a comparison with equilibrium figures and the identification of mass deficit regions. Results. Our 3D shape along with existing mass estimates imply a density of 4.20 ± 0.60 g cm −3 , which is so far the highest for a solar system object following the four telluric planets. Furthermore, the shape of Psyche presents small deviations from an ellipsoid, that is, prominently three large depressions along its equator. The flatness and density of Psyche are compatible with a formation at hydrostatic equilibrium as a Jacobi ellipsoid with a shorter rotation period of ∼3h. Later impacts may have slowed down Psyche’s rotation, which is currently ∼4.2 h, while also creating the imaged depressions. Conclusions. Our results open the possibility that Psyche acquired its primordial shape either after a giant impact while its interior was already frozen or while its interior was still molten owing to the decay of the short-lived radionuclide 26 Al.more » « less
-
ABSTRACT Primordial black holes (PBHs) formed in the early Universe constitute an attractive candidate for dark matter. Within the gaseous environment of the interstellar medium, PBHs with accretion discs naturally launch outflows such as winds and jets. We discuss for the first time how PBHs with significant spin can sustain powerful relativistic jets and generate associated cocoons. Jets and winds can efficiently deposit their kinetic energies and heat the surrounding gas through shocks. Focusing on the Leo T dwarf galaxy, we demonstrate that these effects form novel tests and set new limits on PBHs over a significant ∼10−2 –106 M⊙ mass range, including the parameter space associated with gravitational wave observations by the LIGO and VIRGO Collaborations. Observing the morphology of emission will allow to distinguish between jet and wind contributions, and hence establishes a new method for identifying spinning PBHs.more » « less
-
Abstract We investigate the impact of massive primordial black holes (PBHs;mBH ∼ 106M⊙) on the star formation and first galaxy assembly process using high-resolution hydrodynamical simulations fromz= 1100 toz ∼ 9. We find that PBH accretion is self-regulated by feedback, suppressing mass growth unless feedback is weak. PBHs accelerate structure formation by seeding dark matter (DM) halos and gravitationally attracting gas, but strong feedback can delay cooling and suppress star formation. In addition, the presence of baryon-DM streaming creates an offset between the PBH location and the peaks induced in gas density, promoting earlier and more efficient star formation compared to standard ΛCDM. Byz ∼ 10, PBH-seeded galaxies form dense star clusters, with PBH-to-stellar mass ratios comparable to observed high-zactive galactic nuclei like UHZ-1. Our results support PBHs as viable supermassive black hole (SMBH) seeds but do not exclude alternative scenarios. We emphasize that PBH-seeding provides a natural explanation for some of the newly discovered overmassive SMBHs at high redshift, in particular those with extreme ratios of BH-to-dynamical (virial) mass that challenge standard formation channels. Future studies with ultra-deep JWST surveys, the Roman Space Telescope, and radio surveys with facilities such as the Square Kilometre Array and Hydrogen Epoch of Reionization Array will be critical in distinguishing PBH-driven SMBH growth from other pathways.more » « less
-
A<sc>bstract</sc> In studying secondary gamma-ray emissions from Primordial Black Holes (PBHs), the production of scalar particles like pions and axion-like particles (ALPs) via Hawking radiation is crucial. While previous analyses assumed relativistic production, asteroid-mass PBHs, relevant to upcoming experiments like AMEGO-X, likely produce pions and ALPs non-relativistically when their masses exceed 10 MeV. To account for mass dependence in Hawking radiation, we revisit the greybody factors for massive scalars from Schwarzschild black holes, revealing significant mass corrections to particle production rates compared to the projected AMEGO-X sensitivity. We highlight the importance of considering non-relativisticπ0production in interpreting PBH gamma-ray signals, essential for determining PBH properties. Additionally, we comment on the potential suppression of pion production due to form factor effects when producing extended objects via Hawking radiation. We also provide an example code for calculating the Hawking radiation spectrum of massive scalar particles Image missing<#comment/>.more » « less
An official website of the United States government

