skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Wideband High-Gain Amplifiers in 45-nm CMOS SOI Operating at 0.56 f max: An Analytical Approach on Reversed Feedback Amplifiers
Award ID(s):
2403511
PAR ID:
10631482
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Journal of Solid-State Circuits
ISSN:
0018-9200
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advancements in low power and low noise front-end amplifiers have made it possible to support high-speed data transmission within the deep roll-off regions of conventional wireline channels. Despite being primarily limited by inter-symbol-interference (ISI), these legacy channels also require power-consuming front-end amplifiers due to increased insertion-loss at high frequencies. Wireline-like broadband channels, such as proximity communication and human-body-communication (HBC), as well as multi-lane, densely-packed channels, are further constrained by their high loss and unique channel responses which cause the received signal to be noise-limited. To address these challenges, this paper proposes the use of a discrete-time integrating amplifier as a low power <1 pJ/b using 65nm CMOS up to 5-6 Gb/s) alternative to traditional continuous-time front-end amplifiers. Integrating amplifiers also reduce the effects of noise due to its inherent current integrating process. The paper provides a detailed mathematical analysis of gain of two conventional and three novel and improved integrating amplifiers, accurate input referred noise estimations, signal-to-noise ratio, and a comparison of the integrating amplifier’s performance with that of a low-noise amplifier. The analysis identifies the most optimum integrator architecture and provides comparison with simulated results. This paper also develops theoretical expressions and provides in-depth understanding of input referred noise, while supporting them by simulations using 65nm CMOS technology node. Finally, a comparative analysis between low-noise amplifier and discrete-time integrating amplifier is presented to demonstrate power and noise benefits for both legacy and wireline-like channels, while providing an easier design space as integrator provides two-dimensional controllability for gain. 
    more » « less
  2. null (Ed.)
  3. Ultra-intense parametric amplification can be used for amplifying single photons to macroscopic levels. We experimentally detected coherent states with 〈N〉=4.86 with 17% efficiency and 2.5% dark count probability. 
    more » « less
  4. We document the performance of new ATONA (‘aA to nA’) amplifiers installed on an Isotopx Phoenix thermal ionisation mass spectrometer (TIMS) at Princeton University and evaluate their suitability for high-precision analyses of Pb and U isotopes in pg- to ng-size samples characteristic for U–Pb geochronology. The new amplifiers are characterised by low and stable noise levels comparable to 10 12 to 10 13 ohm resistors, response time <0.5 s, exceptional gain stability <1 ppm and a vast dynamic range theoretically allowing to quantify signals from aA (10 −18 A) to nA (10 −9 A) level. We measured a set of Pb standards, synthetic U–Pb solutions and natural zircons at currents of 2 × 10 −16 to 2 × 10 −12 A (corresponding to intensities of 20 μV to 200 mV relative to a 10 11 ohm amplifier) to assess the utility of ATONA in replacing ion counting for the smallest samples. The results show a clear precision benefit of using ATONA-Faraday detection over Daly ion counting for ion currents of >10 −14 A (1 mV relative to a 10 11 ohm amplifier or ca. 60 kcps). As such currents are routinely achievable for major Pb peaks of interest ( 205–208 Pb) in natural samples containing more than ca. 10 pg Pb* (radiogenic Pb), we expect ATONA-Faraday detection to find broad applications in U–Pb geochronology. Its practical use for low-blank, radiogenic samples continues to require ion counting for 204 Pb, either with a fixed Faraday–ion counter gain or using a dynamic two-step ( e.g. FaraDaly) method. Routine adoption of ATONA-Faraday collection in place of ion counting for most major Pb and U isotopes has the potential to increase sample throughput and precision, both improving the accessibility of isotope dilution (ID)-TIMS geochronology and pushing this technique towards better reproducibility. 
    more » « less