skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 26, 2026

Title: Progress-Aware Video Frame Captioning
While image captioning provides isolated descriptions for individual images, and video captioning offers one single narrative for an entire video clip, our work explores an important middle ground: progress-aware video captioning at the frame level. This novel task aims to generate temporally fine-grained captions that not only accurately describe each frame but also capture the subtle progression of actions throughout a video sequence. Despite the strong capabilities of existing leading vision language models, they often struggle to discern the nuances of frame-wise differences. To address this, we propose ProgressCaptioner, a captioning model designed to capture the fine-grained temporal dynamics within an action sequence. Alongside, we develop the FrameCap dataset to support training and the FrameCapEval benchmark to assess caption quality. The results demonstrate that ProgressCaptioner significantly surpasses leading captioning models, producing precise captions that accurately capture action progression and set a new standard for temporal precision in video captioning. Finally, we showcase practical applications of our approach, specifically in aiding keyframe selection and advancing video understanding, highlighting its broad utility.  more » « less
Award ID(s):
2505865
PAR ID:
10631499
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2412.02071
Date Published:
ISSN:
2412.02071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent{'}s actions can bring about myriad changes in the scene. Observable changes such as movements, manipulations, and transformations of the objects in the scene, are reflected in conventional video captioning. Unlike images, actions in videos are also inherently linked to social aspects such as intentions (why the action is taking place), effects (what changes due to the action), and attributes that describe the agent. Thus for video understanding, such as when captioning videos or when answering questions about videos, one must have an understanding of these commonsense aspects. We present the first work on generating \textit{commonsense} captions directly from videos, to describe latent aspects such as intentions, effects, and attributes. We present a new dataset {``}Video-to-Commonsense (V2C){''} that contains {\textasciitilde}9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. Both the generation task and the QA task can be used to enrich video captions. 
    more » « less
  2. Video Paragraph Captioning aims to generate a multi-sentence description of an untrimmed video with multiple temporal event locations in a coherent storytelling. Following the human perception process, where the scene is effectively understood by decomposing it into visual (e.g. human, animal) and non-visual components (e.g. action, relations) under the mutual influence of vision and language, we first propose a visual-linguistic (VL) feature. In the proposed VL feature, the scene is modeled by three modalities including (i) a global visual environment; (ii) local visual main agents; (iii) linguistic scene elements. We then introduce an autoregressive Transformer-in-Transformer (TinT) to simultaneously capture the semantic coherence of intra- and inter-event contents within a video. Finally, we present a new VL contrastive loss function to guarantee the learnt embedding features are consistent with the captions semantics. Comprehensive experiments and extensive ablation studies on the ActivityNet Captions and YouCookII datasets show that the proposed Visual-Linguistic Transformer-in-Transform (VLTinT) outperforms previous state-of-the-art methods in terms of accuracy and diversity. The source code is made publicly available at: https://github.com/UARK-AICV/VLTinT. 
    more » « less
  3. We introduce the task of spotting temporally precise, fine-grained events in video (detecting the precise moment in time events occur). Precise spotting requires models to reason globally about the full-time scale of actions and locally to identify subtle frame-to-frame appearance and motion differences that identify events during these actions. Surprisingly, we find that top performing solutions to prior video understanding tasks such as action detection and segmentation do not simultaneously meet both requirements. In response, we propose E2E-Spot, a compact, end-to-end model that performs well on the precise spotting task and can be trained quickly on a single GPU. We demonstrate that E2E-Spot significantly outperforms recent baselines adapted from the video action detection, segmentation, and spotting literature to the precise spotting task. Finally, we contribute new annotations and splits to several fine-grained sports action datasets to make these datasets suitable for future work on precise spotting. 
    more » « less
  4. Videos convey rich information. Dynamic spatio-temporal relationships between people/objects, and diverse multimodal events are present in a video clip. Hence, it is important to develop automated models that can accurately extract such information from videos. Answering questions on videos is one of the tasks which can evaluate such AI abilities. In this paper, we propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions. Specifically, we first employ dense image captions to help identify objects and their detailed salient regions and actions, and hence give the model useful extra information (in explicit textual format to allow easier matching) for answering questions. Moreover, our model is also comprised of dual-level attention (word/object and frame level), multi-head self/cross-integration for different sources (video and dense captions), and gates which pass more relevant information to the classifier. Finally, we also cast the frame selection problem as a multi-label classification task and introduce two loss functions, In-andOut Frame Score Margin (IOFSM) and Balanced Binary Cross-Entropy (BBCE), to better supervise the model with human importance annotations. We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin (74.09% versus 70.52%). We also present several word, object, and frame level visualization studies. 
    more » « less
  5. Avidan, S. (Ed.)
    Despite the success of fully-supervised human skeleton sequence modeling, utilizing self-supervised pre-training for skeleton sequence representation learning has been an active field because acquiring task-specific skeleton annotations at large scales is difficult. Recent studies focus on learning video-level temporal and discriminative information using contrastive learning, but overlook the hierarchical spatial-temporal nature of human skeletons. Different from such superficial supervision at the video level, we propose a self-supervised hierarchical pre-training scheme incorporated into a hierarchical Transformer-based skeleton sequence encoder (Hi-TRS), to explicitly capture spatial, short-term, and long-term temporal dependencies at frame, clip, and video levels, respectively. To evaluate the proposed self-supervised pre-training scheme with Hi-TRS, we conduct extensive experiments covering three skeleton-based downstream tasks including action recognition, action detection, and motion prediction. Under both supervised and semi-supervised evaluation protocols, our method achieves the state-of-the-art performance. Additionally, we demonstrate that the prior knowledge learned by our model in the pre-training stage has strong transfer capability for different downstream tasks. 
    more » « less