skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Optimization-Based Planner with B-spline Parameterized Continuous-Time Reference Signals
For the cascaded planning and control modules implemented for robot navigation, the frequency gap between the planner and controller has received limited attention. In this study, we introduce a novel B-spline parameterized optimization-based planner (BSPOP) designed to address the frequency gap challenge with limited onboard computational power in robots. The proposed planner generates continuous-time control inputs for low-level controllers running at arbitrary frequencies to track. Furthermore, when considering the convex control action sets, BSPOP uses the convex hull property to automatically constrain the continuous-time control inputs within the convex set. Consequently, compared with the discrete-time optimization-based planners, BSPOP reduces the number of decision variables and inequality constraints, which improves computational efficiency as a byproduct. Simulation results demonstrate that our approach can achieve a comparable planning performance to the high-frequency baseline optimization-based planners while demanding less computational power. Both simulation and experiment results show that the proposed method performs better in planning compared with baseline planners in the same frequency.  more » « less
Award ID(s):
2133656
PAR ID:
10631508
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-7770-5
Page Range / eLocation ID:
3100 to 3107
Format(s):
Medium: X
Location:
Abu Dhabi, United Arab Emirates
Sponsoring Org:
National Science Foundation
More Like this
  1. Trajectory optimization o↵ers mature tools for motion planning in high-dimensional spaces under dynamic constraints. However, when facing complex configuration spaces, cluttered with obstacles, roboticists typically fall back to sampling-based planners that struggle in very high dimensions and with continuous di↵erential constraints. Indeed, obstacles are the source of many textbook examples of problematic nonconvexities in the trajectory-optimization prob- lem. Here we show that convex optimization can, in fact, be used to reliably plan trajectories around obstacles. Specifically, we consider planning problems with collision-avoidance constraints, as well as cost penalties and hard constraints on the shape, the duration, and the velocity of the trajectory. Combining the properties of B ́ezier curves with a recently-proposed framework for finding shortest paths in Graphs of Convex Sets (GCS), we formulate the planning problem as a compact mixed-integer optimization. In stark contrast with existing mixed-integer planners, the convex relaxation of our programs is very tight, and a cheap round- ing of its solution is typically sufficient to design globally-optimal trajectories. This reduces the mixed-integer program back to a simple convex optimization, and automatically provides optimality bounds for the planned trajectories. We name the proposed planner GCS, after its underlying optimization framework. We demonstrate GCS in simulation on a variety of robotic platforms, including a quadrotor flying through buildings and a dual-arm manipulator (with fourteen degrees of freedom) moving in a confined space. Using numerical experiments on a seven-degree-of-freedom manipulator, we show that GCS can outperform widely-used sampling-based planners by finding higher-quality trajectories in less time. 
    more » « less
  2. We consider a large-scale multi-robot path planning problem in a cluttered environment. Our approach achieves real-time replanning by dividing the workspace into cells and utilizing a hierarchical planner. Specifically, we propose novel multi-commodity flow-based high-level planners that route robots through cells with reduced congestion, along with an anytime low-level planner that computes collision-free paths for robots within each cell in parallel. A highlight of our method is a significant improvement in computation time. Specifically, we show empirical results of a 500-times speedup in computation time compared to the baseline multi-agent pathfinding approach on the environments we study. We account for the robot's embodiment and support non-stop execution with continuous replanning. We demonstrate the real-time performance of our algorithm with up to 142 robots in simulation, and a representative 32 physical Crazyflie nano-quadrotor experiment. 
    more » « less
  3. null (Ed.)
    Abstract An autonomous adaptive model predictive control (MPC) architecture is presented for control of heating, ventilation, and air condition (HVAC) systems to maintain indoor temperature while reducing energy use. Although equipment use and occupant changes with time, existing MPC methods are not capable of automatically relearning models and computing control decisions reliably for extended periods without intervention from a human expert. We seek to address this weakness. Two major features are embedded in the proposed architecture to enable autonomy: (i) a system identification algorithm from our prior work that periodically re-learns building dynamics and unmeasured internal heat loads from data without requiring re-tuning by experts. The estimated model is guaranteed to be stable and has desirable physical properties irrespective of the data; (ii) an MPC planner with a convex approximation of the original nonconvex problem. The planner uses a descent and convergent method, with the underlying optimization problem being feasible and convex. A yearlong simulation with a realistic plant shows that both of the features of the proposed architecture—periodic model and disturbance update and convexification of the planning problem—are essential to get performance improvement over a commonly used baseline controller. Without these features, long-term energy savings from MPC can be small while with them, the savings from MPC become substantial. 
    more » « less
  4. Considering the growing demand of real-time motion planning in robot applications, this paper proposes a fast robot motion planner (FRMP) to plan collision-free and time-optimal trajectories, which applies the convex feasible set algorithm (CFS) to solve both the trajectory planning problem and the temporal optimization problem. The performance of CFS in trajectory planning is compared to the sequential quadratic programming (SQP) in simulation, which shows a significant decrease in iteration numbers and computation time to converge a solution. The effectiveness of temporal optimization is shown on the operational time reduction in the experiment on FANUC LR Mate 200iD/7L. 
    more » « less
  5. We present a novel method for performing integrated task and motion planning (TMP) by adapting any off-the-shelf sampling-based motion planning algorithm to simultaneously solve for a symbolically and geometrically feasible plan using a single motion planner invocation. The core insight of our technique is an embedding of symbolic state into continuous space, coupled with a novel means of automatically deriving a function guiding a planner to regions of continuous space where symbolic actions can be executed. Our technique makes few assumptions and offers a great degree of flexibility and generality compared to state of the art planners. We describe our technique and offer a proof of probabilistic completeness along with empirical evaluation of our technique on manipulation benchmark problems. 
    more » « less