The ubiquitous pollution of the environment with microplastics, a diverse suite of contaminants, is of growing concern for science and currently receives considerable public, political, and academic attention. The potential impact of microplastics in the environment has prompted a great deal of research in recent years. Many diverse methods have been developed to answer different questions about microplastic pollution, from sources, transport, and fate in the environment, and about effects on humans and wildlife. These methods are often insufficiently described, making studies neither comparable nor reproducible. The proliferation of new microplastic investigations and cross-study syntheses to answer larger scale questions are hampered. This diverse group of 23 researchers think these issues can begin to be overcome through the adoption of a set of reporting guidelines. This collaboration was created using an open science framework that we detail for future use. Here, we suggest harmonized reporting guidelines for microplastic studies in environmental and laboratory settings through all steps of a typical study, including best practices for reporting materials, quality assurance/quality control, data, field sampling, sample preparation, microplastic identification, microplastic categorization, microplastic quantification, and considerations for toxicology studies. We developed three easy to use documents, a detailed document, a checklist, and a mind map, that can be used to reference the reporting guidelines quickly. We intend that these reporting guidelines support the annotation, dissemination, interpretation, reviewing, and synthesis of microplastic research. Through open access licensing (CC BY 4.0), these documents aim to increase the validity, reproducibility, and comparability of studies in this field for the benefit of the global community.
more »
« less
Experimental reporting of fish transcriptomic responses in environmental toxicology and ecotoxicology
Abstract Due to its increasing affordability and efforts to understand transcriptional responses of organisms to biotic and abiotic stimuli, transcriptomics has become an important tool with significant impact on toxicological investigations and hazard and risk assessments, especially during development and application of new approach methodologies (NAMs). Data generated using transcriptomic methodologies have directly informed adverse outcome pathway frameworks, chemical and biological read across, and aided in the identification of points of departure. Using data reporting frameworks for transcriptomics data offers improved transparency and reproducibility of research and an opportunity to identify barriers to adoption of these NAMs, especially in environmental toxicology and ecotoxicology with aquatic models. Improved reporting also allows for reexamination of existing data, limiting needs for experiment replication and further reducing animal experimentation. Here, we use a standardized form of data reporting for omics-based studies, the Organisation for Economic Co-operation and Development omics reporting framework, which specifically reports on a list of parameters that should be included in transcriptomics studies used in a regulatory context. We focused specifically on fish studies using RNA- Sequencing (Seq)/microarray technologies within a toxicology context. Inconsistencies in reporting and methodologies among the experimental designs (toxicology vs. molecular characterization) were observed in addition to foundational differences in reporting of sample concentration or preparation or quality assessments, which can affect reproducibility and read across, confidence in results, and contribute substantially to understanding molecular mechanisms of toxicants and toxins. Our findings present an opportunity for improved research reporting. We also provide several recommendations as logical steps to reduce barriers to adoption of transcriptomics within environmental toxicology and ecotoxicology.
more »
« less
- PAR ID:
- 10631610
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Environmental Toxicology and Chemistry
- Volume:
- 44
- Issue:
- 9
- ISSN:
- 0730-7268
- Format(s):
- Medium: X Size: p. 2580-2598
- Size(s):
- p. 2580-2598
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Blockchain has emerged as a solution for ensuring accurate and truthful environmental variable monitoring needed for the management of pollutants and natural resources. The immutability property of blockchain helps protect the measured data on pollution and natural resources to enable truthful reporting and effective management and control of polluting agents. However, specifics on what to measure, how to use blockchain, and highlighting which blockchain frameworks have been adopted need to be explored to fill the research gaps. Therefore, we review existing works on the use of blockchain for monitoring and managing environmental variables in this paper. Specifically, we examine existing blockchain applications on greenhouse gas emissions, solid and plastic waste, food waste, food security, water usage, and the circular economy and identify what motivates the adoption of blockchain, features sought, used blockchain frameworks and consensus algorithms, and the adopted supporting technologies to complement data sensing and reporting. We conclude the review by identifying practical works that provide implementation details for rapid adoption and remaining challenges that merit future research.more » « less
-
Abstract Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT.more » « less
-
null (Ed.)Abstract Reporting specific modelling methods and metadata is essential to the reproducibility of ecological studies, yet guidelines rarely exist regarding what information should be noted. Here, we address this issue for ecological niche modelling or species distribution modelling, a rapidly developing toolset in ecology used across many aspects of biodiversity science. Our quantitative review of the recent literature reveals a general lack of sufficient information to fully reproduce the work. Over two-thirds of the examined studies neglected to report the version or access date of the underlying data, and only half reported model parameters. To address this problem, we propose adopting a checklist to guide studies in reporting at least the minimum information necessary for ecological niche modelling reproducibility, offering a straightforward way to balance efficiency and accuracy. We encourage the ecological niche modelling community, as well as journal reviewers and editors, to utilize and further develop this framework to facilitate and improve the reproducibility of future work. The proposed checklist framework is generalizable to other areas of ecology, especially those utilizing biodiversity data, environmental data and statistical modelling, and could also be adopted by a broader array of disciplines.more » « less
-
The increasing volume of electronic waste (e-waste) creates significant environmental and economic challenges which demands practical management strategies. Life Cycle Assessment (LCA) has been known as a principal tool for evaluating the environmental impact of e-waste recycling and disposal methods. However, its application is hampered by inconsistencies in methodology, data limitations, and variations in system boundaries. This study provides a review of current LCA tools used in e-waste analysis and identifies gaps and opportunities for improvement. It categorizes studies into three groups: studies that applied LCA to product and process optimization, impact evaluation, and policy development. Findings reveal that LCA has been helpful in assessing the sustainability of different recycling strategies. However, significant variations exist in methodological approaches and data accuracy. Challenges such as the lack of standardized LCA protocols, the limited availability of regionspecific impact data, and inconsistencies in assessment methodologies are still barriers to its widespread adoption. Finally, the study discusses emerging trends in LCA aimed at addressing current gaps, including the incorporation of machine learning and artificial intelligence for predictive modeling, dynamic impact assessment frameworks, and the role of real-time data collection via IoT-based sensors.more » « less
An official website of the United States government
