Given significant concerns about fairness and bias in the use of artificial intelligence (AI) and machine learning (ML) for psychological assessment, we provide a conceptual framework for investigating and mitigating machine-learning measurement bias (MLMB) from a psychometric perspective. MLMB is defined as differential functioning of the trained ML model between subgroups. MLMB manifests empirically when a trained ML model produces different predicted score levels for different subgroups (e.g., race, gender) despite them having the same ground-truth levels for the underlying construct of interest (e.g., personality) and/or when the model yields differential predictive accuracies across the subgroups. Because the development of ML models involves both data and algorithms, both biased data and algorithm-training bias are potential sources of MLMB. Data bias can occur in the form of nonequivalence between subgroups in the ground truth, platform-based construct, behavioral expression, and/or feature computing. Algorithm-training bias can occur when algorithms are developed with nonequivalence in the relation between extracted features and ground truth (i.e., algorithm features are differentially used, weighted, or transformed between subgroups). We explain how these potential sources of bias may manifest during ML model development and share initial ideas for mitigating them, including recognizing that new statistical and algorithmic procedures need to be developed. We also discuss how this framework clarifies MLMB but does not reduce the complexity of the issue. 
                        more » 
                        « less   
                    
                            
                            From Fake to Real: Pretraining on Balanced Synthetic Images to Prevent Spurious Correlations in Image Recognition
                        
                    
    
            Visual recognition models are prone to learning spurious correlations induced by a biased training set where certain conditions (eg, Indoors) are over-represented in certain classes (eg, Big Dogs). Synthetic data from off-the-shelf large-scale generative models offers a promising direction to mitigate this issue by augmenting underrepresented subgroups in the real dataset. However, by using a mixed distribution of real and synthetic data, we introduce another source of bias due to distributional differences between synthetic and real data (eg synthetic artifacts). As we will show, prior work's approach for using synthetic data to resolve the model's bias toward do not correct the model's bias toward the pair , where denotes whether the sample is real or synthetic. Thus, the model could simply learn signals based on the pair (eg, Synthetic Indoors) to make predictions about (eg, Big Dogs). To address this issue, we propose a simple, easy-to-implement, two-step training pipeline that we call From Fake to Real (FFR). The first step of FFR pre-trains a model on balanced synthetic data to learn robust representations across subgroups. In the second step, FFR fine-tunes the model on real data using ERM or common loss-based bias mitigation methods. By training on real and synthetic data separately, FFR does not expose the model to the statistical differences between real and synthetic data and thus avoids the issue of bias toward the pair . Our experiments show that FFR improves worst group accuracy over the state-of-the-art by up to 20% over three datasets. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2134696
- PAR ID:
- 10631612
- Publisher / Repository:
- European Conference on Computer Vision
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Contrastive learning (CL), a self-supervised learning approach, can effectively learn visual representations from unlabeled data. Given the CL training data, generative models can be trained to generate synthetic data to supplement the real data. Using both synthetic and real data for CL training has the potential to improve the quality of learned representations. However, synthetic data usually has lower quality than real data, and using synthetic data may not improve CL compared with using real data. To tackle this problem, we propose a data generation framework with two methods to improve CL training by joint sample generation and contrastive learning. The first approach generates hard samples for the main model. The generator is jointly learned with the main model to dynamically customize hard samples based on the training state of the main model. Besides, a pair of data generators are proposed to generate similar but distinct samples as positive pairs. In joint learning, the hardness of a positive pair is progressively increased by decreasing their similarity. Experimental results on multiple datasets show superior accuracy and data efficiency of the proposed data generation methods applied to CL. For example, about 4.0%, 3.5%, and 2.6% accuracy improvements for linear classification are observed on ImageNet-100, CIFAR-100, and CIFAR-10, respectively. Besides, up to 2× data efficiency for linear classification and up to 5× data efficiency for transfer learning are achieved.more » « less
- 
            Kajtoch, Łukasz (Ed.)This study presents an initial model for bark beetle identification, serving as a foundational step toward developing a fully functional and practical identification tool. Bark beetles are known for extensive damage to forests globally, as well as for uniform and homoplastic morphology which poses identification challenges. Utilizing a MaxViT-based deep learning backbone which utilizes local and global attention to classify bark beetles down to the genus level from images containing multiple beetles. The methodology involves a process of image collection, preparation, and model training, leveraging pre-classified beetle species to ensure accuracy and reliability. The model's F1 score estimates of 0.99 and 1.0 indicates a strong ability to accurately classify genera in the collected data, including those previously unknown to the model. This makes it a valuable first step towards building a tool for applications in forest management and ecological research. While the current model distinguishes among 12 genera, further refinement and additional data will be necessary to achieve reliable species-level identification, which is particularly important for detecting new invasive species. Despite the controlled conditions of image collection and potential challenges in real-world application, this study provides the first model capable of identifying the bark beetle genera, and by far the largest training set of images for any comparable insect group. We also designed a function that reports if a species appears to be unknown. Further research is suggested to enhance the model's generalization capabilities and scalability, emphasizing the integration of advanced machine learning techniques for improved species classification and the detection of invasive or undescribed species.more » « less
- 
            Graph Neural Networks (GNNs) have emerged as the leading paradigm for solving graph analytical problems in various real-world applications. Nevertheless, GNNs could potentially render biased predictions towards certain demographic subgroups. Understanding how the bias in predictions arises is critical, as it guides the design of GNN debiasing mechanisms. However, most existing works overwhelmingly focus on GNN debiasing, but fall short on explaining how such bias is induced. In this paper, we study a novel problem of interpreting GNN unfairness through attributing it to the influence of training nodes. Specifically, we propose a novel strategy named Probabilistic Distribution Disparity (PDD) to measure the bias exhibited in GNNs, and develop an algorithm to efficiently estimate the influence of each training node on such bias. We verify the validity of PDD and the effectiveness of influence estimation through experiments on real-world datasets. Finally, we also demonstrate how the proposed framework could be used for debiasing GNNs. Open-source code can be found at https://github.com/yushundong/BIND.more » « less
- 
            Deep Neural Networks are powerful tools for understanding complex patterns and making decisions. However, their black-box nature impedes a complete understanding of their inner workings. Saliency-Guided Training (SGT) methods try to highlight the prominent features in the model's training based on the output to alleviate this problem. These methods use back-propagation and modified gradients to guide the model toward the most relevant features while keeping the impact on the prediction accuracy negligible. SGT makes the model's final result more interpretable by masking input partially. In this way, considering the model's output, we can infer how each segment of the input affects the output. In the particular case of image as the input, masking is applied to the input pixels. However, the masking strategy and number of pixels which we mask, are considered as a hyperparameter. Appropriate setting of masking strategy can directly affect the model's training. In this paper, we focus on this issue and present our contribution. We propose a novel method to determine the optimal number of masked images based on input, accuracy, and model loss during the training. The strategy prevents information loss which leads to better accuracy values. Also, by integrating the model's performance in the strategy formula, we show that our model represents the salient features more meaningful. Our experimental results demonstrate a substantial improvement in both model accuracy and the prominence of saliency, thereby affirming the effectiveness of our proposed solution.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    