skip to main content


Title: Interpreting Unfairness in Graph Neural Networks via Training Node Attribution
Graph Neural Networks (GNNs) have emerged as the leading paradigm for solving graph analytical problems in various real-world applications. Nevertheless, GNNs could potentially render biased predictions towards certain demographic subgroups. Understanding how the bias in predictions arises is critical, as it guides the design of GNN debiasing mechanisms. However, most existing works overwhelmingly focus on GNN debiasing, but fall short on explaining how such bias is induced. In this paper, we study a novel problem of interpreting GNN unfairness through attributing it to the influence of training nodes. Specifically, we propose a novel strategy named Probabilistic Distribution Disparity (PDD) to measure the bias exhibited in GNNs, and develop an algorithm to efficiently estimate the influence of each training node on such bias. We verify the validity of PDD and the effectiveness of influence estimation through experiments on real-world datasets. Finally, we also demonstrate how the proposed framework could be used for debiasing GNNs. Open-source code can be found at https://github.com/yushundong/BIND.  more » « less
Award ID(s):
2223768 2223769 2228534 2154962 2144209 2006844
PAR ID:
10428212
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
6
ISSN:
2159-5399
Page Range / eLocation ID:
7441 to 7449
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Neural Networks (GNNs) have shown satisfying performance in various graph analytical problems. Hence, they have become the de facto solution in a variety of decision-making scenarios. However, GNNs could yield biased results against certain demographic subgroups. Some recent works have empirically shown that the biased structure of the input network is a significant source of bias for GNNs. Nevertheless, no studies have systematically scrutinized which part of the input network structure leads to biased predictions for any given node. The low transparency on how the structure of the input network influences the bias in GNN outcome largely limits the safe adoption of GNNs in various decision-critical scenarios. In this paper, we study a novel research problem of structural explanation of bias in GNNs. Specifically, we propose a novel post-hoc explanation framework to identify two edge sets that can maximally account for the exhibited bias and maximally contribute to the fairness level of the GNN prediction for any given node, respectively. Such explanations not only provide a comprehensive understanding of bias/fairness of GNN predictions but also have practical significance in building an effective yet fair GNN model. Extensive experiments on real-world datasets validate the effectiveness of the proposed framework towards delivering effective structural explanations for the bias of GNNs. Open-source code can be found at https://github.com/yushundong/REFEREE. 
    more » « less
  2. Graph Neural Networks (GNNs) have shown superior performance in analyzing attributed networks in various web-based applications such as social recommendation and web search. Nevertheless, in high-stake decision-making scenarios such as online fraud detection, there is an increasing societal concern that GNNs could make discriminatory decisions towards certain demographic groups. Despite recent explorations on fair GNNs, these works are tailored for a specific GNN model. However, myriads of GNN variants have been proposed for different applications, and it is costly to fine-tune existing debiasing algorithms for each specific GNN architecture. Different from existing works that debias GNN models, we aim to debias the input attributed network to achieve fairer GNNs through feeding GNNs with less biased data. Specifically, we propose novel definitions and metrics to measure the bias in an attributed network, which leads to the optimization objective to mitigate bias. We then develop a framework EDITS to mitigate the bias in attributed networks while maintaining the performance of GNNs in downstream tasks. EDITS works in a model-agnostic manner, i.e., it is independent of any specific GNN. Experiments demonstrate the validity of the proposed bias metrics and the superiority of EDITS on both bias mitigation and utility maintenance. Open-source implementation: https://github.com/yushundong/EDITS. 
    more » « less
  3. There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at https://github.com/zhimengj0326/FMP.

     
    more » « less
  4. Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility. Open-source code can be found at https://github.com/yushundong/RELIANT. 
    more » « less
  5. Graph neural networks (GNNs) have limited expressive power, failing to represent many graph classes correctly. While more expressive graph representation learning (GRL) alternatives can distinguish some of these classes, they are significantly harder to implement, may not scale well, and have not been shown to outperform well-tuned GNNs in real-world tasks. Thus, devising simple, scalable, and expressive GRL architectures that also achieve real-world improvements remains an open challenge. In this work, we show the extent to which graph reconstruction---reconstructing a graph from its subgraphs---can mitigate the theoretical and practical problems currently faced by GRL architectures. First, we leverage graph reconstruction to build two new classes of expressive graph representations. Secondly, we show how graph reconstruction boosts the expressive power of any GNN architecture while being a (provably) powerful inductive bias for invariances to vertex removals. Empirically, we show how reconstruction can boost GNN's expressive power---while maintaining its invariance to permutations of the vertices---by solving seven graph property tasks not solvable by the original GNN. Further, we demonstrate how it boosts state-of-the-art GNN's performance across nine real-world benchmark datasets. 
    more » « less