skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: INFORMING INTENSIVE CARE UNIT DIGITAL TWINS: DYNAMIC ASSESSMENT OF CARDIORESPIRATORY FAILURE TRAJECTORIES IN PATIENTS WITH SEPSIS
ABSTRACT Understanding clinical trajectories of sepsis patients is crucial for prognostication, resource planning, and to inform digital twin models of critical illness. This study aims to identify common clinical trajectories based on dynamic assessment of cardiorespiratory support using a validated electronic health record data that covers retrospective cohort of 19,177 patients with sepsis admitted to intensive care units (ICUs) of Mayo Clinic Hospitals over 8-year period. Patient trajectories were modeled from ICU admission up to 14 days using an unsupervised machine learning two-stage clustering method based on cardiorespiratory support in ICU and hospital discharge status. Of 19,177 patients, 42% were female with a median age of 65 (interquartile range [IQR], 55–76) years, The Acute Physiology, Age, and Chronic Health Evaluation III score of 70 (IQR, 56–87), hospital length of stay (LOS) of 7 (IQR, 4–12) days, and ICU LOS of 2 (IQR, 1–4) days. Four distinct trajectories were identified: fast recovery (27% with a mortality rate of 3.5% and median hospital LOS of 3 (IQR, 2–15) days), slow recovery (62% with a mortality rate of 3.6% and hospital LOS of 8 (IQR, 6–13) days), fast decline (4% with a mortality rate of 99.7% and hospital LOS of 1 (IQR, 0–1) day), and delayed decline (7% with a mortality rate of 97.9% and hospital LOS of 5 (IQR, 3–8) days). Distinct trajectories remained robust and were distinguished by Charlson Comorbidity Index, The Acute Physiology, Age, and Chronic Health Evaluation III scores, as well as day 1 and day 3 SOFA (P< 0.001 ANOVA). These findings provide a foundation for developing prediction models and digital twin decision support tools, improving both shared decision making and resource planning.  more » « less
Award ID(s):
2123848
PAR ID:
10631747
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wolters Kluwer
Date Published:
Journal Name:
Shock
Volume:
63
Issue:
4
ISSN:
1073-2322
Page Range / eLocation ID:
573 to 578
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ObjectivesTo quantify differences between (1) stratifying patients by predicted disease onset risk alone and (2) stratifying by predicted disease onset risk and severity of downstream outcomes. We perform a case study of predicting sepsis. Materials and MethodsWe performed a retrospective analysis using observational data from Michigan Medicine at the University of Michigan (U-M) between 2016 and 2020 and the Beth Israel Deaconess Medical Center (BIDMC) between 2008 and 2012. We measured the correlation between the estimated sepsis risk and the estimated effect of sepsis on mortality using Spearman’s correlation. We compared patients stratified by sepsis risk with patients stratified by sepsis risk and effect of sepsis on mortality. ResultsThe U-M and BIDMC cohorts included 7282 and 5942 ICU visits; 7.9% and 8.1% developed sepsis, respectively. Among visits with sepsis, 21.9% and 26.3% experienced mortality at U-M and BIDMC. The effect of sepsis on mortality was weakly correlated with sepsis risk (U-M: 0.35 [95% CI: 0.33-0.37], BIDMC: 0.31 [95% CI: 0.28-0.34]). High-risk patients identified by both stratification approaches overlapped by 66.8% and 52.8% at U-M and BIDMC, respectively. Accounting for risk of mortality identified an older population (U-M: age = 66.0 [interquartile range—IQR: 55.0-74.0] vs age = 63.0 [IQR: 51.0-72.0], BIDMC: age = 74.0 [IQR: 61.0-83.0] vs age = 68.0 [IQR: 59.0-78.0]). DiscussionPredictive models that guide selective interventions ignore the effect of disease on downstream outcomes. Reformulating patient stratification to account for the estimated effect of disease on downstream outcomes identifies a different population compared to stratification on disease risk alone. ConclusionModels that predict the risk of disease and ignore the effects of disease on downstream outcomes could be suboptimal for stratification. 
    more » « less
  2. Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case–control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1–5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0–73.5) minutes. A median false alarm rate of 1.1 (IQR. 0–2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0–58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness. 
    more » « less
  3. Abstract Background Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well studied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in sepsis. Methods We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity analyses were performed with alternative clustering methodologies. Results A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening ( n  = 612, 13.1%), Delayed Worsening ( n  = 960, 20.5%), Rapidly Improving ( n  = 1932, 41.3%), and Delayed Improving ( n  = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-hospital mortality (28.3%, P -value < 0.001), despite a lower SOFA (mean: 4.5) at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger numbers. Conclusions Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets and identify more precise populations and endpoints for clinical trials. 
    more » « less
  4. null (Ed.)
    Background Prior diagnosis of heart failure (HF) is associated with increased length of hospital stay (LOS) and mortality from COVID-19. Associations between substance use, venous thromboembolism (VTE) or peripheral arterial disease (PAD) and its effects on LOS or mortality in patients with HF hospitalised with COVID-19 remain unknown. Objective This study identified risk factors associated with poor in-hospital outcomes among patients with HF hospitalised with COVID-19. Methods Case–control study was conducted of patients with prior diagnosis of HF hospitalised with COVID-19 at an academic tertiary care centre from 1 January 2020 to 28 February 2021. Patients with HF hospitalised with COVID-19 with risk factors were compared with those without risk factors for clinical characteristics, LOS and mortality. Multivariate regression was conducted to identify multiple predictors of increased LOS and in-hospital mortality in patients with HF hospitalised with COVID-19. Results Total of 211 patients with HF were hospitalised with COVID-19. Women had longer LOS than men (9 days vs 7 days; p<0.001). Compared with patients without PAD or ischaemic stroke, patients with PAD or ischaemic stroke had longer LOS (7 days vs 9 days; p=0.012 and 7 days vs 11 days, p<0.001, respectively). Older patients (aged 65 and above) had increased in-hospital mortality compared with younger patients (adjusted OR: 1.04; 95% CI 1.00 to 1.07; p=0.036). Prior diagnosis of VTE increased mortality more than threefold in patients with HF hospitalised with COVID-19 (adjusted OR: 3.33; 95% CI 1.29 to 8.43; p=0.011). Conclusion Vascular diseases increase LOS and mortality in patients with HF hospitalised with COVID-19. 
    more » « less
  5. BACKGROUND:Classification of perioperative risk is important for patient care, resource allocation, and guiding shared decision-making. Using discriminative features from the electronic health record (EHR), machine-learning algorithms can create digital phenotypes among heterogenous populations, representing distinct patient subpopulations grouped by shared characteristics, from which we can personalize care, anticipate clinical care trajectories, and explore therapies. We hypothesized that digital phenotypes in preoperative settings are associated with postoperative adverse events including in-hospital and 30-day mortality, 30-day surgical redo, intensive care unit (ICU) admission, and hospital length of stay (LOS). METHODS:We identified all laminectomies, colectomies, and thoracic surgeries performed over a 9-year period from a large hospital system. Seventy-seven readily extractable preoperative features were first selected from clinical consensus, including demographics, medical history, and lab results. Three surgery-specific datasets were built and split into derivation and validation cohorts using chronological occurrence. Consensusk-means clustering was performed independently on each derivation cohort, from which phenotypes’ characteristics were explored. Cluster assignments were used to train a random forest model to assign patient phenotypes in validation cohorts. We reconducted descriptive analyses on validation cohorts to confirm the similarity of patient characteristics with derivation cohorts, and quantified the association of each phenotype with postoperative adverse events by using the area under receiver operating characteristic curve (AUROC). We compared our approach to American Society of Anesthesiologists (ASA) alone and investigated a combination of our phenotypes with the ASA score. RESULTS:A total of 7251 patients met inclusion criteria, of which 2770 were held out in a validation dataset based on chronological occurrence. Using segmentation metrics and clinical consensus, 3 distinct phenotypes were created for each surgery. The main features used for segmentation included urgency of the procedure, preoperative LOS, age, and comorbidities. The most relevant characteristics varied for each of the 3 surgeries. Low-risk phenotype alpha was the most common (2039 of 2770, 74%), while high-risk phenotype gamma was the rarest (302 of 2770, 11%). Adverse outcomes progressively increased from phenotypes alpha to gamma, including 30-day mortality (0.3%, 2.1%, and 6.0%, respectively), in-hospital mortality (0.2%, 2.3%, and 7.3%), and prolonged hospital LOS (3.4%, 22.1%, and 25.8%). When combined with the ASA score, digital phenotypes achieved higher AUROC than the ASA score alone (hospital mortality: 0.91 vs 0.84; prolonged hospitalization: 0.80 vs 0.71). CONCLUSIONS:For 3 frequently performed surgeries, we identified 3 digital phenotypes. The typical profiles of each phenotype were described and could be used to anticipate adverse postoperative events. 
    more » « less