skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 22, 2026

Title: Mechanism of Arrhythmogenesis Driven by Early After Depolarizations in Cardiac Tissue
Early-after depolarizations (EADs) are changes in the action potential plateau that can lead to cardiac arrhythmia. At the cellular level, these oscillations are irregular and change from beat to beat due to the sensitivity of voltage repolarization to subcellular stochastic processes. However, the behavior of EADs in tissue, where cells are strongly coupled by gap junctions, is less understood. In this study, we develop a computational model of EADs caused by a reduction in the rate of calcium-induced inactivation of the L-type calcium channel. We find that, as inactivation decreases EADs occur with durations varying randomly from beat to beat. In cardiac tissue, however, gap junction coupling between cells dampens these fluctuations, and it is unclear what dictates the formation of EADs. In this study we show that EADs in cardiac tissue can be modeled by the deterministic limit of a stochastic single-cell model. Analysis of this deterministic model reveals that EADs emerge in tissue after an abrupt transition to alternans, where large populations of cells suddenly synchronize, causing EADs on every other beat. We analyze this transition and show that it is due to a discontinuous bifurcation that leads to a large change in the action potential duration in response to very small changes in pacing rate. We further demonstrate that this transition is highly arrhythmogenic, as the sudden onset of EADs on alternate beats in cardiac tissue promotes conduction block and reentry. Our results highlight the importance of EAD alternans in arrhythmogenesis and suggests that ectopic beats may not be required.  more » « less
Award ID(s):
2320846
PAR ID:
10631750
Author(s) / Creator(s):
; ; ;
Editor(s):
Marsden, Alison
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
21
Issue:
4
ISSN:
1553-7358
Page Range / eLocation ID:
e1012635
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Life‐threatening ventricular arrhythmias and sudden cardiac death are often preceded by cardiac alternans, a beat‐to‐beat oscillation in the T‐wave morphology or duration. However, given the spatiotemporal and structural complexity of the human heart, designing algorithms to effectively suppress alternans and prevent fatal rhythms is challenging. Recently, an antiarrhythmic constant diastolic interval pacing protocol was proposed and shown to be effective in suppressing alternans in 0‐, 1‐, and 2‐dimensional in silico studies as well as in ex vivo whole heart experiments. Herein, we provide a systematic review of the electrophysiological conditions and mechanisms that enable constant diastolic interval pacing to be an effective antiarrhythmic pacing strategy. We also demonstrate a successful translation of the constant diastolic interval pacing protocol into an ECG‐based real‐time control system capable of modulating beat‐to‐beat cardiac electrical activity and preventing alternans. Furthermore, we present evidence of the clinical utility of real‐time alternans suppression in reducing arrhythmia susceptibility in vivo. We provide a comprehensive overview of this promising pacing technique, which can potentially be translated into a clinically viable device that could radically improve the quality of life of patients experiencing abnormal cardiac rhythms. 
    more » « less
  2. Abstract Heart rhythm assessment is indispensable in diagnosis and management of many cardiac conditions and to study heart rate variability in healthy individuals. We present a proof-of-concept system for acquiring individual heart beats using smart speakers in a fully contact-free manner. Our algorithms transform the smart speaker into a short-range active sonar system and measure heart rate and inter-beat intervals (R-R intervals) for both regular and irregular rhythms. The smart speaker emits inaudible 18–22 kHz sound and receives echoes reflected from the human body that encode sub-mm displacements due to heart beats. We conducted a clinical study with both healthy participants and hospitalized cardiac patients with diverse structural and arrhythmic cardiac abnormalities including atrial fibrillation, flutter and congestive heart failure. Compared to electrocardiogram (ECG) data, our system computed R-R intervals for healthy participants with a median error of 28 ms over 12,280 heart beats and a correlation coefficient of 0.929. For hospitalized cardiac patients, the median error was 30 ms over 5639 heart beats with a correlation coefficient of 0.901. The increasing adoption of smart speakers in hospitals and homes may provide a means to realize the potential of our non-contact cardiac rhythm monitoring system for monitoring of contagious or quarantined patients, skin sensitive patients and in telemedicine settings. 
    more » « less
  3. Dual voltage-calcium fluorescence optical recordings are increasingly appealing to characterize complex spa-tiotemporal cardiac dynamics within ex-vivo whole-heart ex-perimental preparations. Synchrony among voltage and calcium signals allows us to unveil novel multi-scale and multi-physics couplings at the ventricular scale and quantify features that define the intrinsic nonlinearities of the observed phenom-ena. Within such a complex scenario, we propose a rigorous methodological analysis comparing and contrasting multiple cardiac alternans onset and evolution indicators for rabbit pacing-down restitution protocols. We introduce a novel integral index quantified upon voltage and calcium signals, validated against well-accepted post-processing analyses, and generalized in terms of statistical restitution curves obtained under four different thermal states. Our study suggests that such a novel indicator can further advance our predictability on alternans onset, linking the concurrent evolution to an innovative quan-tification of the characteristic length obtained for both voltage and calcium at different thermal states. 
    more » « less
  4. null (Ed.)
    As a leading cause of death in 325,000 adults per year in the United States, a significant proportion of sudden cardiac arrest (SCA) result from arrhythmias. To better understand the onset of arrhythmias and its potential treatment with more rapid and effective control approaches, a two-dimensional 50 × 50 cellular automata (CA) model is used in this study to illustrate the propagation of electrical waves across its tissue, and a constant diastolic interval (DI) control mechanism is adopted to help stabilize and prevent cardiac arrhythmias. Simulations of various scenarios including normal conduction and spiral waves in the presence of scar, normal conduction and alternans under control conditions are shown. The results validate that the CA model and constant DI control method are very efficient and effective in the study of dynamics and control of cardiac arrhythmias. 
    more » « less
  5. Optogenetic methods for pacing of cardiac tissue can be realized by direct genetic modification of the cardiomyocytes to express light-sensitive actuators, such as channelrhodopsin-2, ChR2, or by introduction of light-sensitized non-myocytes that couple to the cardiac cells and yield responsiveness to optical pacing. In this study, we engineer three-dimensional “spark cells” spheroids, composed of ChR2-expressing human embryonic kidney cells (from 100 to 100,000 cells per spheroid), and characterize their morphology as function of cell density and time. These “spark-cell” spheroids are then deployed to demonstrate site-specific optical pacing of human stem-cell-derived cardiomyocytes (hiPSC-CMs) in 96-well format using non-localized light application and all-optical electrophysiology with voltage and calcium small-molecule dyes or genetically encoded sensors. We show that the spheroids can be handled using liquid pipetting and can confer optical responsiveness of cardiac tissue earlier than direct viral or liposomal genetic modification of the cardiomyocytes, with 24% providing reliable stimulation of the iPSC-CMs within 6 h and >80% within 24 h. Moreover, our data show that the spheroids can be frozen in liquid nitrogen for long-term storage and transportation, after which they can be deployed as a reagent on site for optical cardiac pacing. In all cases, optical stimulation was achieved at relatively low light levels (<0.15 mW/mm 2 ) when 5 ms or longer pulses were used. Our results demonstrate a scalable, cost-effective method with a cryopreservable reagent to achieve contactless optical stimulation of cardiac cell constructs without genetically modifying the myocytes, that can be integrated in a robotics-amenable workflow for high-throughput drug testing. 
    more » « less