skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting quantum channels over general product distributions
We investigate the problem of predicting the output behavior of unknown quantum channels. Given query access to an n-qubit channel E and an observable O, we aim to learn the mapping ρ↦Tr(OE[ρ]) to within a small error for most ρ sampled from a distribution D. Previously, Huang, Chen, and Preskill proved a surprising result that even if E is arbitrary, this task can be solved in time roughly nO(log(1/ϵ)), where ϵ is the target prediction error. However, their guarantee applied only to input distributions D invariant under all single-qubit Clifford gates, and their algorithm fails for important cases such as general product distributions over product states ρ. In this work, we propose a new approach that achieves accurate prediction over essentially any product distribution D, provided it is not "classical" in which case there is a trivial exponential lower bound. Our method employs a "biased Pauli analysis," analogous to classical biased Fourier analysis. Implementing this approach requires overcoming several challenges unique to the quantum setting, including the lack of a basis with appropriate orthogonality properties. The techniques we develop to address these issues may have broader applications in quantum information.  more » « less
Award ID(s):
2505865
PAR ID:
10631765
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2409.03684
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of finding a (pure) product state with optimal fidelity to an unknown n-qubit quantum state ρ, given copies of ρ. This is a basic instance of a fundamental question in quantum learning: is it possible to efficiently learn a simple approximation to an arbitrary state? We give an algorithm which finds a product state with fidelity ε-close to optimal, using N=npoly(1/ε) copies of ρ and poly(N) classical overhead. We further show that estimating the optimal fidelity is NP-hard for error ε=1/poly(n), showing that the error dependence cannot be significantly improved. For our algorithm, we build a carefully-defined cover over candidate product states, qubit by qubit, and then demonstrate that extending the cover can be reduced to approximate constrained polynomial optimization. For our proof of hardness, we give a formal reduction from polynomial optimization to finding the closest product state. Together, these results demonstrate a fundamental connection between these two seemingly unrelated questions. Building on our general approach, we also develop more efficient algorithms in three simpler settings: when the optimal fidelity exceeds 5/6; when we restrict ourselves to a discrete class of product states; and when we are allowed to output a matrix product state. 
    more » « less
  2. Learning the Hamiltonian underlying a quantum many-body system in thermal equilibrium is a fundamental task in quantum learning theory and experimental sciences. To learn the Gibbs state of local Hamiltonians at any inverse temperature β, the state-of-the-art provable algorithms fall short of the optimal sample and computational complexity, in sharp contrast with the locality and simplicity in the classical cases. In this work, we present a learning algorithm that learns each local term of a n-qubit D-dimensional Hamiltonian to an additive error ϵ with sample complexity $$\tilde{O}\left(\frac{e^{\mathrm{poly}(\beta)}}{\beta^2\epsilon^2}\right)\log(n)$$. The protocol uses parallelizable local quantum measurements that act within bounded regions of the lattice and near-linear-time classical post-processing. Thus, our complexity is near optimal with respect to n, ϵ and is polynomially tight with respect to β. We also give a learning algorithm for Hamiltonians with bounded interaction degree with sample and time complexities of similar scaling on n but worse on β, ϵ. At the heart of our algorithm is the interplay between locality, the Kubo-Martin-Schwinger condition, and the operator Fourier transform at arbitrary temperatures. 
    more » « less
  3. Kohayakawa, Y.; Miyazawa, F.K. (Ed.)
    In this work we are interested in the problem of testing quantum entanglement. More specifically, we study the separability problem in quantum property testing, where one is given n copies of an unknown mixed quantum state ϱ on Cd⊗Cd , and one wants to test whether ϱ is separable or ϵ -far from all separable states in trace distance. We prove that n=Ω(d2/ϵ2) copies are necessary to test separability, assuming ϵ is not too small, viz. ϵ=Ω(1/d−−√) . We also study completely positive distributions on the grid [d]×[d] , as a classical analogue of separable states. We analogously prove that Ω(d/ϵ2) samples from an unknown distribution p are necessary to decide whether p is completely positive or ϵ -far from all completely positive distributions in total variation distance. 
    more » « less
  4. The authors provide the first tight sample complexity bounds for shadow tomography and classical shadows in the regime where the target error is below some sufficiently small inverse polynomial in the dimension of the Hilbert space. Specifically, they present a protocol that, given any 𝑚 ∈ 𝑁 m∈N and 𝜖 ≤ 𝑂 ( 𝑑 − 1 / 2 ) ϵ≤O(d −1/2 ), measures 𝑂 ( log ⁡ ( 𝑚 ) / 𝜖 2 ) O(log(m)/ϵ 2 ) copies of an unknown mixed state 𝜌 ∈ 𝐶 𝑑 × 𝑑 ρ∈C d×d and outputs a classical description of 𝜌 ρ. This description can then be used to estimate any collection of 𝑚 m observables to within additive accuracy 𝜖 ϵ. Previously, even for the simpler case of shadow tomography where observables are known in advance, the best known rates either scaled benignly but suboptimally in all of 𝑚 , 𝑑 , 𝜖 m,d,ϵ, or scaled optimally in 𝜖 , 𝑚 ϵ,m but included additional polynomial factors in 𝑑 d. Interestingly, the authors also show via dimensionality reduction that one can rescale 𝜖 ϵ and 𝑑 d to reduce to the regime where 𝜖 ≤ 𝑂 ( 𝑑 − 1 / 2 ) ϵ≤O(d −1/2 ). Their algorithm draws on representation-theoretic tools developed in the context of full state tomography. 
    more » « less
  5. Motivated by estimation of quantum noise models, we study the problem of learning a Pauli channel, or more generally the Pauli error rates of an arbitrary channel. By employing a novel reduction to the "Population Recovery" problem, we give an extremely simple algorithm that learns the Pauli error rates of an n -qubit channel to precision ϵ in ℓ ∞ using just O ( 1 / ϵ 2 ) log ⁡ ( n / ϵ ) applications of the channel. This is optimal up to the logarithmic factors. Our algorithm uses only unentangled state preparation and measurements, and the post-measurement classical runtime is just an O ( 1 / ϵ ) factor larger than the measurement data size. It is also impervious to a limited model of measurement noise where heralded measurement failures occur independently with probability ≤ 1 / 4 .We then consider the case where the noise channel is close to the identity, meaning that the no-error outcome occurs with probability 1 − η . In the regime of small η we extend our algorithm to achieve multiplicative precision 1 ± ϵ (i.e., additive precision ϵ η ) using just O ( 1 ϵ 2 η ) log ⁡ ( n / ϵ ) applications of the channel. 
    more » « less