Large Language Models (LLMs) have received much recent attention due to their human-level accuracy. While existing works mostly focus on either improving accuracy or testing accuracy robustness, the computation efficiency of LLMs, which is of paramount importance due to often vast generation demands and real-time requirements, has surprisingly received little attention. In this article, we make the first attempt to understand and test potential computation efficiency robustness in state-of-the-art LLMs. By analyzing the working mechanism and implementation of 20,543 public-accessible LLMs, we observe a fundamental property in LLMs that could be manipulated in an adversarial manner to reduce computation efficiency significantly. Our interesting observation is that the output length determines the computation efficiency of LLMs instead of the input, where the output length depends on two factors: an often sufficiently large yet pessimistic pre-configured threshold controlling the max number of iterations and a runtime-generated end of sentence (EOS) token. Our key motivation is to generate test inputs that could sufficiently delay the generation of EOS such that LLMs would have to go through enough iterations to satisfy the pre-configured threshold. We presentLLMEffiChecker, which can work under both white-box setting and black-box setting. In the white-box scenario,LLMEffiCheckerdevelops a gradient-guided technique that searches for a minimal and unnoticeable perturbation at character-level, token-level, and structure-level. In the black-box scenario,LLMEffiCheckeremploys a causal inference-based approach to find critical tokens and similarly applies three levels of imperceptible perturbation to them. Both the white-box and black-box settings effectively delay the appearance of EOS, compelling these inputs to reach the naturally unreachable threshold. To demonstrate the effectiveness ofLLMEffiChecker, we conduct a systematic evaluation on nine publicly available LLMs: Google T5, AllenAI WMT14, Helsinki-NLP translator, Facebook FairSeq, UNICAMP-DL translator, MarianMT, Google FLAN-T5, MBZUAI LaMini-GPT, and Salesforce CodeGen. Experimental results show thatLLMEffiCheckercan increase on average LLMs’ response latency and energy consumption by 325% to 3,244% and 344% to 3,616%, respectively, by perturbing just one character or token in the input sentence. Our case study shows that inputs generated byLLMEffiCheckersignificantly affect the battery power in real-world mobile devices (i.e., drain more than 30 times battery power than normal inputs).
more »
« less
From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models
One of the most striking findings in modern research on large language models (LLMs) is that scaling up compute during training leads to better results. However, less attention has been given to the benefits of scaling compute during inference. This survey focuses on these inference-time approaches. We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation. Token-level generation algorithms, often called decoding algorithms, operate by sampling a single token at a time or constructing a token-level search space and then selecting an output. These methods typically assume access to a language model's logits, next-token distributions, or probability scores. Meta-generation algorithms work on partial or full sequences, incorporating domain knowledge, enabling backtracking, and integrating external information. Efficient generation methods aim to reduce token costs and improve the speed of generation. Our survey unifies perspectives from three research communities: traditional natural language processing, modern LLMs, and machine learning systems.
more »
« less
- Award ID(s):
- 2505865
- PAR ID:
- 10631788
- Publisher / Repository:
- https://doi.org/10.48550/arXiv.2406.16838 Focus to learn more
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Discrete diffusion has achieved state-of-the-art performance, outperforming or approaching autoregressive models on standard benchmarks. In this work, we introduce Discrete Diffusion with Planned Denoising (DDPD), a novel framework that separates the generation process into two models: a planner and a denoiser. At inference time, the planner selects which positions to denoise next by identifying the most corrupted positions in need of denoising, including both initially corrupted and those requiring additional refinement. This plan-and-denoise approach enables more efficient reconstruction during generation by iteratively identifying and denoising corruptions in the optimal order. DDPD outperforms traditional denoiser-only mask diffusion methods, achieving superior results on language modeling benchmarks such as text8, OpenWebText, and token-based image generation on ImageNet 256×256. Notably, in language modeling, DDPD significantly reduces the performance gap between diffusion-based and autoregressive methods in terms of generative perplexity.more » « less
-
Discrete diffusion has achieved state-of-the-art performance, outperforming or approaching autoregressive models on standard benchmarks. In this work, we introduce Discrete Diffusion with Planned Denoising (DDPD), a novel framework that separates the generation process into two models: a planner and a denoiser. At inference time, the planner selects which positions to denoise next by identifying the most corrupted positions in need of denoising, including both initially corrupted and those requiring additional refinement. This plan-and-denoise approach enables more efficient reconstruction during generation by iteratively identifying and denoising corruptions in the optimal order. DDPD outperforms traditional denoiser-only mask diffusion methods, achieving superior results on language modeling benchmarks such as text8, OpenWebText, and token-based image generation on ImageNet 256×256. Notably, in language modeling, DDPD significantly reduces the performance gap between diffusion-based and autoregressive methods in terms of generative perplexity.more » « less
-
Tokenization is used almost universally by modern language models, enabling efficient text representation using multi-byte or multi-character tokens. However, prior work has shown that tokenization can introduce distortion into the model's generations, an issue known as the Prompt Boundary Problem (PBP). For example, users are often advised not to end their prompts with a space because it prevents the model from including the space as part of the next token. While this heuristic is effective in English, the underlying PBP continues to affect languages such as Chinese as well as code generation, where tokens often do not line up with word and syntactic boundaries. In this work, we present an inference-time method to convert any autoregressive LM with a BPE tokenizer into a character-level or byte-level LM. Our method efficiently solves the PBP and is also able to unify the vocabularies of language models with different tokenizers, allowing one to ensemble LMs with different tokenizers at inference time or transfer the post-training from one model to another using proxy-tuning. We demonstrate in experiments that the ensemble and proxy-tuned models outperform their constituents on downstream evals. Code is available at this https URL .more » « less
-
The remarkable performance of large language models (LLMs) in generation tasks has enabled practitioners to leverage publicly available models to power custom applications, such as chatbots and virtual assistants. However, the data used to train or fine-tune these LLMs is often undisclosed, allowing an attacker to compromise the data and inject backdoors into the models. In this paper, we develop a novel inference time defense, named CLEANGEN, to mitigate backdoor attacks for generation tasks in LLMs. CLEANGEN is a lightweight and effective decoding strategy that is compatible with the state-of-the-art (SOTA) LLMs. Our insight behind CLEANGEN is that compared to other LLMs, back doored LLMs assign significantly higher probabilities to tokens representing the attacker-desired contents. These discrepancies in token probabilities enable CLEANGEN to identify suspicious tokens favored by the attacker and replace them with tokens generated by another LLM that is not compromised by the same attacker, thereby avoiding generation of attacker-desired content. We evaluate CLEANGEN against five SOTA backdoor attacks. Our results show that CLEANGEN achieves lower attack success rates (ASR) compared to five SOTA baseline defenses for all five backdoor attacks. Moreover, LLMs deploying CLEANGEN maintain helpfulness in their responses when serving benign user queries with minimal added computational overhead.more » « less
An official website of the United States government

