skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 14, 2026

Title: Viewpoint Rosetta Stone: Unlocking Unpaired Ego-Exo Videos for View-invariant Representation Learning
Egocentric and exocentric perspectives of human action differ significantly, yet overcoming this extreme viewpoint gap is critical in augmented reality and robotics. We propose VIEWPOINTROSETTA, an approach that unlocks large-scale unpaired ego and exo video data to learn clip-level viewpoint-invariant video representations. Our framework introduces (1) a diffusion-based Rosetta Stone Translator (RST), which, leveraging a moderate amount of synchronized multi-view videos, serves as a translator in feature space to decipher the alignment between unpaired ego and exo data, and (2) a dual encoder that aligns unpaired data representations through contrastive learning with RST-based synthetic feature augmentation and soft alignment. To evaluate the learned features in a standardized setting, we construct a new cross-view benchmark using Ego-Exo4D, covering cross-view retrieval, action recognition, and skill assessment tasks. Our framework demonstrates superior cross-view understanding compared to previous view-invariant learning and ego video representation learning approaches, and opens the door to bringing vast amounts of traditional third-person video to bear on the more nascent first-person setting.  more » « less
Award ID(s):
2505865
PAR ID:
10631792
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
CVPR 2025
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate exocentric-to-egocentric cross-view translation, which aims to generate a first-person (egocentric) view of an actor based on a video recording that captures the actor from a third-person (exocentric) perspective. To this end, we propose a generative framework called Exo2Ego that decouples the translation process into two stages: high-level structure transformation, which explicitly encourages cross-view correspondence between exocentric and egocentric views, and a diffusion-based pixel-level hallucination, which incorporates a hand layout prior to enhance the fidelity of the generated egocentric view. To pave the way for future advancements in this field, we curate a comprehensive exo-to-ego cross-view translation benchmark. It consists of a diverse collection of synchronized ego-exo tabletop activity video pairs sourced from three public datasets: H2O, Aria Pilot, and Assembly101. The experimental results validate that Exo2Ego delivers photorealistic video results with clear hand manipulation details and outperforms several baselines in terms of both synthesis quality and generalization ability to new actions. 
    more » « less
  2. Abstract. We present 4Diff, a 3D-aware diffusion model addressing the exo-to-ego viewpoint translation task—generating first-person (egocentric) view images from the corresponding third-person (exocentric) images. Building on the diffusion model’s ability to generate photorealistic images, we propose a transformer-based diffusion model that incorporates geometry priors through two mechanisms: (i) egocentric point cloud rasterization and (ii) 3D-aware rotary cross-attention. Egocentric point cloud rasterization converts the input exocentric image into an egocentric layout, which is subsequently used by a diffusion image transformer. As a component of the diffusion transformer’s denoiser block, the 3D-aware rotary cross-attention further incorporates 3D information and semantic features from the source exocentric view. Our 4Diff achieves state-of-the-art results on the challenging and diverse Ego-Exo4D multiview dataset and exhibits robust generalization to novel environments not encountered during training. Our code, processed data, and pretrained models are publicly available at https://klauscc.github.io/4diff. 
    more » « less
  3. Underwater ROVs (Remotely Operated Vehicles) are unmanned submersibles designed for exploring and operating in the depths of the ocean. Despite using high-end cameras, typical teleoperation engines based on first-person (egocentric) views limit a surface operator’s ability to maneuver the ROV in complex deep-water missions. In this paper, we present an interactive teleoperation interface that enhances the operational capabilities via increased situational awareness. This is accomplished by (i) offering on-demand third-person (exocentric) visuals from past egocentric views, and (ii) facilitating enhanced peripheral information with augmented ROV pose in real-time. We achieve this by integrating a 3D geometry-based Ego-to-Exo view synthesis algorithm into a monocular SLAM system for accurate trajectory estimation. The proposed closed-form solution only uses past egocentric views from the ROV and a SLAM backbone for pose estimation, which makes it portable to existing ROV platforms. Unlike data-driven solutions, it is invariant to applications and waterbody-specific scenes. We validate the geometric accuracy of the proposed framework through extensive experiments of 2-DOF indoor navigation and 6-DOF underwater cave exploration in challenging low-light conditions. A subjective evaluation on 15 human teleoperators further confirms the effectiveness of the integrated features for improved teleoperation. We demonstrate the benefits of dynamic Ego-to-Exo view generation and real-time pose rendering for remote ROV teleoperation by following navigation guides such as cavelines inside underwater caves. This new way of interactive ROV teleoperation opens up promising opportunities for future research in subsea telerobotics. 
    more » « less
  4. Underwater ROVs (Remotely Operated Vehicles) are unmanned submersibles designed for exploring and operating in the depths of the ocean. Despite using high-end cameras, typical teleoperation engines based on first-person (egocentric) views limit a surface operator’s ability to maneuver the ROV in complex deep-water missions. In this paper, we present an interactive teleoperation interface that enhances the operational capabilities via increased situational awareness. This is accomplished by (i) offering on-demand third-person (exocentric) visuals from past egocentric views, and (ii) facilitating enhanced peripheral information with augmented ROV pose in real-time. We achieve this by integrating a 3D geometry-based Ego-to-Exo view synthesis algorithm into a monocular SLAM system for accurate trajectory estimation. The proposed closed-form solution only uses past egocentric views from the ROV and a SLAM backbone for pose estimation, which makes it portable to existing ROV platforms. Unlike data-driven solutions, it is invariant to applications and waterbody-specific scenes. We validate the geometric accuracy of the proposed framework through extensive experiments of 2-DOF indoor navigation and 6-DOF underwater cave exploration in challenging low-light conditions. A subjective evaluation on 15 human teleoperators further confirms the effectiveness of the integrated features for improved teleoperation. We demonstrate the benefits of dynamic Ego-to-Exo view generation and real-time pose rendering for remote ROV teleoperation by following navigation guides such as cavelines inside underwater caves. This new way of interactive ROV teleoperation opens up promising opportunities for future research in subsea telerobotics. 
    more » « less
  5. We address the problem of human action classification in drone videos. Due to the high cost of capturing and labeling large-scale drone videos with diverse actions, we present unsupervised and semi-supervised domain adaptation approaches that leverage both the existing fully annotated action recognition datasets and unannotated (or only a few annotated) videos from drones. To study the emerging problem of drone-based action recognition, we create a new dataset, NEC-DRONE, containing 5,250 videos to evaluate the task. We tackle both problem settings with 1) same and 2) different action label sets for the source (e.g., Kinectics dataset) and target domains (drone videos). We present a combination of video and instance-based adaptation methods, paired with either a classifier or an embedding-based framework to transfer the knowledge from source to target. Our results show that the proposed adaptation approach substantially improves the performance on these challenging and practical tasks. We further demonstrate the applicability of our method for learning cross-view action recognition on the Charades-Ego dataset. We provide qualitative analysis to understand the behaviors of our approaches. 
    more » « less