skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Re-exploring Molecular Complexity with ALMA: Insights into chemical differentiation from the molecular composition of hot cores in Sgr B2(N2)
Context. Hot molecular cores correspond to the phase of star formation during which many molecules, in particular complex organic molecules (COMs), thermally desorb from the surface of dust grains. Sophisticated kinetic models of interstellar chemistry describe the processes that lead to the formation and subsequent evolution of COMs in star-forming regions. Aims. Our goal is to derive the chemical composition of hot cores in order to improve our understanding of interstellar chemistry. In particular, we want to test the models by comparing their predictions to the observed composition of the gas phase of hot cores. Methods. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to perform an imaging spectral line survey of the high mass star-forming region Sagittarius B2(N) at 3 mm, called Re-exploring Molecular Complexity with ALMA (ReMoCA). We modeled under the assumption of local thermodynamic equilibrium the spectra obtained with this survey toward the sources embedded in the secondary hot core Sgr B2(N2). We compared the chemical composition of these sources to that of sources from the literature and to predictions of the chemical kinetics model MAGICKAL. Results. We detected up to 58 molecules toward Sgr B2(N2)’s hot cores, including up to 24 COMs, as well as many less abundant isotopologs. The compositions of some pairs of sources are well correlated, but differences also exist, in particular for HNCO and NH2CHO. The abundances of series of homologous molecules drop by about one order of magnitude at each further step in complexity. The nondetection of radicals yields stringent constraints on the models. The comparison to the chemical models confirms previous evidence of a high cosmic-ray ionization rate in Sgr B2(N). The comparison to sources from the literature gives a new insight into chemical differentiation. The composition of most hot cores of Sgr B2(N2) is tightly correlated to that of the hot core G31.41+0.31 and the hot corino IRAS 16293–2422 B after normalizing the abundances by classes of molecules (O-bearing, N-bearing, O+N-bearing, and S-bearing). There is no overall correlation between Sgr B2(N2) and the shocked region G+0.693−0.027 also located in Sgr B2, and even less with the cold starless core TMC-1. The class of N-bearing species reveals the largest variance among the four classes of molecules. The S-bearing class shows in contrast the smallest variance. Conclusions. These results imply that the class of N-bearing molecules reacts more sensitively to shocks, low-temperature gas phase chemistry after nonthermal desorption, or density. The overall abundance shifts observed between the N-bearing and O-bearing molecules may indicate how violently and completely the ice mantles are desorbed.  more » « less
Award ID(s):
2206516
PAR ID:
10631829
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
698
ISSN:
0004-6361
Page Range / eLocation ID:
A143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The detection of a branched alkyl molecule in the high-mass star forming protocluster Sagittarius (Sgr) B2(N) permitted by the advent of the Atacama Large Millimeter/submillimeter Array (ALMA) revealed a new dimension of interstellar chemistry. Astrochemical simulations subsequently predicted that beyond a certain degree of molecular complexity, branched molecules could even dominate over their straight-chain isomers. Aims. More generally, we aim to probe further the presence in the interstellar medium of complex organic molecules with the capacity to exhibit both a normal and iso form, via the attachment of a functional group to either a primary or secondary carbon atom. Methods. We used the imaging spectral line survey ReMoCA performed with ALMA at high angular resolution and the results of a recent spectroscopic study of propanol to search for the iso and normal isomers of this molecule in the hot molecular core Sgr B2(N2). We analyzed the interferometric spectra under the assumption of local thermodynamical equilibrium. We expanded the network of the astrochemical model MAGICKAL to explore the formation routes of propanol and put the observational results in a broader astrochemical context. Results. We report the first interstellar detection of iso-propanol, ¿-C 3 H 7 OH, toward a position of Sgr B2(N2) that shows narrow linewidths. We also report the first secure detection of the normal isomer of propanol, n-C 3 H 7 OH, in a hot core. Iso-propanol is found to be nearly as abundant as normal-propanol, with an abundance ratio of 0.6 which is similar to the ratio of 0.4 that we obtained previously for iso- and normal-propyl cyanide in Sgr B2(N2) at lower angular resolution with our previous ALMA survey, EMoCA. The observational results are in good agreement with the outcomes of our astrochemical models, which indicate that the OH-radical addition to propylene in dust-grain ice mantles, driven by water photodissociation, can produce appropriate quantities of normal- and iso-propanol. The normal-to-iso ratio in Sgr B2(N2) may be a direct inheritance of the branching ratio of this reaction process. Conclusions. The detection of normal- and iso-propanol and their ratio indicate that the modest preference for the normal form of propyl cyanide determined previously may be a more general feature among similarly sized interstellar molecules. Detecting other pairs of interstellar organic molecules with a functional group attached either to a primary or secondary carbon may help in pinning down the processes that dominate in setting their normal-to-iso ratios. Butanol and its isomers would be the next obvious candidates in the alcohol family, but their detection in hot cores will be challenging. 
    more » « less
  2. Abstract We report the discovery of nine new hot molecular cores in the Deep South (DS) region of Sagittarius B2 using Atacama Large Millimeter/submillimeter Array Band 6 observations. We measure the rotational temperature of CH3OH and derive the physical conditions present within these cores and the hot core Sgr B2(S). The cores show heterogeneous temperature structure, with peak temperatures between 252 and 662 K. We find that the cores span a range of masses (203–4842M) and radii (3587–9436 au). CH3OH abundances consistently increase with temperature across the sample. Our measurements show the DS hot cores are structurally similar to Galactic disk hot cores, with radii and temperature gradients that are comparable to sources in the disk. They also show shallower density gradients than disk hot cores, which may arise from the Central Molecular Zone’s higher density threshold for star formation. The hot cores have properties which are consistent with those of Sgr B2(N), with three associated with Class II CH3OH masers and one associated with an ultra-compact Hiiregion. Our sample nearly doubles the high-mass star-forming gas mass near Sgr B2(S) and suggests the region may be a younger, comparably massive counterpart to Sgr B2(N) and (M). The relationship between peak CH3OH abundance and rotational temperature traced by our sample and a selection of comparable hot cores is qualitatively consistent with predictions from chemical modeling. However, we observe constant peak abundances at higher temperatures (T≳ 250 K), which may indicate mechanisms for methanol survival that are not yet accounted for in models. 
    more » « less
  3. Context.Hot cores are signposts of the protostellar activity of dense cores in star-forming regions. W43-MM1 is a young region that is very rich in terms of high-mass star formation, which is highlighted by the presence of large numbers of high-mass cores and outflows. Aims.We aim to systematically identify the massive cores in W43-MM1 that contain a hot core and compare their molecular composition. Methods.We used Atacama Large Millimeter/sub-millimeter Array (ALMA) high-spatial resolution (~2500 au) data to identify line-rich protostellar cores and carried out a comparative study of their temperature and molecular composition. Here, the identification of hot cores is based on both the spatial distribution of the complex organic molecules and the contribution of molecular lines relative to the continuum intensity. We rely on the analysis of CH3CN and CH3CCH to estimate the temperatures of the selected cores. Finally, we rescale the spectra of the different hot cores based on their CH3OCHO line intensities to directly compare the detections and line intensities of the other species. Results.W43-MM1 turns out to be a region that is rich in massive hot cores. It contains at least one less massive (core #11, 2M) and seven massive (16−100M) hot cores. The excitation temperature of CH3CN, whose emission is centred on the cores, is of the same order for all of them (120–160 K). There is a factor of up to 30 difference in the intensity of the lines of complex organic molecules (COMs). However the molecular emission of the hot cores appears to be the same or within a factor of 2–3. This suggests that these massive cores, which span about an order of magnitude in core mass, have a similar chemical composition and show similar excitation of most of the COMs. In contrast, CH3CCH emission is found to preferentially trace the envelope, with a temperature ranging from 50 K to 90 K. Lines in core #11 are less optically thick, which makes them proportionally more intense compared to the continuum than lines observed in the more massive hot cores. Core #1, the most massive hot core of W43-MM1, shows a richer line spectrum than the other cores in our sample, in particular in N-bearing molecules and ethylene glycol lines. In core #2, the emission of O-bearing molecules, such as OCS, CH3OCHO, and CH3OH, does not peak at the dust continuum core centre; the blueshifted and redshifted emission corresponds to the outflow lobes, suggesting formation via sublimation of the ice mantles through shocks or UV irradiation on the walls of the cavity. These data establish a benchmark for the study of other massive star-formation regions and hot cores. 
    more » « less
  4. Abstract We present Atacama Large Millimeter/submillimeter Array Band 3 data toward five massive young stellar objects (MYSOs), and investigate relationships between unsaturated carbon-chain species and saturated complex organic molecules (COMs). An HC 5 N ( J = 35–34) line has been detected from three MYSOs, where nitrogen (N)-bearing COMs (CH 2 CHCN and CH 3 CH 2 CN) have been detected. The HC 5 N spatial distributions show compact features and match with a methanol (CH 3 OH) line with an upper-state energy around 300 K, which should trace hot cores. The hot regions are more extended around the MYSOs where N-bearing COMs and HC 5 N have been detected compared to two MYSOs without these molecular lines, while there are no clear differences in the bolometric luminosity and temperature. We run chemical simulations of hot-core models with a warm-up stage, and compare with the observational results. The observed abundances of HC 5 N and COMs show good agreements with the model at the hot-core stage with temperatures above 160 K. These results indicate that carbon-chain chemistry around the MYSOs cannot be reproduced by warm carbon-chain chemistry, and a new type of carbon-chain chemistry occurs in hot regions around MYSOs. 
    more » « less
  5. Context. Numerous complex organic molecules have been detected in the universe and among them are amides, which are considered as prime models for species containing a peptide linkage. In its backbone, acrylamide (CH 2 CHC(O)NH 2 ) bears not only the peptide bond, but also the vinyl functional group that is a common structural feature in many interstellar compounds. This makes acrylamide an interesting candidate for searches in the interstellar medium. In addition, a tentative detection of the related molecule propionamide (C 2 H 5 C(O)NH 2 ) has been recently claimed toward Sgr B2(N). Aims. The aim of this work is to extend the knowledge of the laboratory rotational spectrum of acrylamide to higher frequencies, which would make it possible to conduct a rigorous search for interstellar signatures of this amide using millimeter wave astronomy. Methods. We measured and analyzed the rotational spectrum of acrylamide between 75 and 480 GHz. We searched for emission of acrylamide in the imaging spectral line survey ReMoCA performed with the Atacama Large Millimeter/submillimeter Array toward Sgr B2(N). We also searched for propionamide in the same source. The astronomical spectra were analyzed under the assumption of local thermodynamic equilibrium. Results. We report accurate laboratory measurements and analyses of thousands of rotational transitions in the ground state and two excited vibrational states of the most stable syn form of acrylamide. In addition, we report an extensive set of rotational transitions for the less stable skew conformer. Tunneling through a low energy barrier between two symmetrically equivalent configurations has been revealed for this higher-energy species. Neither acrylamide nor propionamide were detected toward the two main hot molecular cores of Sgr B2(N). We did not detect propionamide either toward a position located to the east of the main hot core, thereby undermining the recent claim of its interstellar detection toward this position. We find that acrylamide and propionamide are at least 26 and 14 times less abundant, respectively, than acetamide toward the main hot core Sgr B2(N1S), and at least 6 and 3 times less abundant, respectively, than acetamide toward the secondary hot core Sgr B2(N2). Conclusions. A comparison with results of astrochemical kinetics model for related species suggests that acrylamide may be a few hundred times less abundant than acetamide, corresponding to a value that is at least an order of magnitude lower than the observational upper limits. Propionamide may be as little as only a factor of two less abundant than the upper limit derived toward Sgr B2(N1S). Lastly, the spectroscopic data presented in this work will aid future searches of acrylamide in space. 
    more » « less