skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable stellar evolution forecasting: Deep learning emulation versus hierarchical nearest-neighbor interpolation
Many astrophysical applications require efficient yet reliable forecasts of stellar evolution tracks. One example is population synthesis, which generates forward predictions of models for comparison with observations. The majority of state-of-the-art rapid population synthesis methods are based on analytic fitting formulae to stellar evolution tracks that are computationally cheap to sample statistically over a continuous parameter range. The computational costs of running detailed stellar evolution codes, such as MESA, over wide and densely sampled parameter grids are prohibitive, while stellar-age based interpolation in-between sparsely sampled grid points leads to intolerably large systematic prediction errors. In this work, we provide two solutions for automated interpolation methods that offer satisfactory trade-off points between cost-efficiency and accuracy. We construct a timescale-adapted evolutionary coordinate and use it in a two-step interpolation scheme that traces the evolution of stars from zero age main sequence all the way to the end of core helium burning while covering a mass range from 0.65 to 300M. The feedforward neural network regression model (first solution) that we train to predict stellar surface variables can make millions of predictions, sufficiently accurate over the entire parameter space, within tens of seconds on a 4-core CPU. The hierarchical nearest-neighbor interpolation algorithm (second solution) that we hard-code to the same end achieves even higher predictive accuracy, the same algorithm remains applicable to all stellar variables evolved over time, but it is two orders of magnitude slower. Our methodological framework is demonstrated to work on the MESA ISOCHRONES ANDSTELLARTRACKS(Choi et al. 2016) data set, but is independent of the input stellar catalog. Finally, we discuss the prospective applications of these methods and provide guidelines for generalizing them to higher dimensional parameter spaces.  more » « less
Award ID(s):
2206523
PAR ID:
10631865
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Astronomy & Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
681
ISSN:
0004-6361
Page Range / eLocation ID:
A86
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.Grids of stellar evolution models with rotation using the Geneva stellar evolution code (GENEC) have been published for a wide range of metallicities. Aims.We introduce the last remaining grid of GENECmodels, with a metallicity ofZ = 10−5. We study the impact of this extremely metal-poor initial composition on various aspects of stellar evolution, and compare it to the results from previous grids at other metallicities. We provide electronic tables that can be used to interpolate between stellar evolution tracks and for population synthesis. Methods.Using the same physics as in the previous papers of this series, we computed a grid of stellar evolution models with GENECspanning masses between 1.7 and 500M, with and without rotation, at a metallicity ofZ = 10−5. Results.Due to the extremely low metallicity of the models, mass-loss processes are negligible for all except the most massive stars. For most properties (such as evolutionary tracks in the Hertzsprung-Russell diagram, lifetimes, and final fates), the present models fit neatly between those previously computed at surrounding metallicities. However, specific to this metallicity is the very large production of primary nitrogen in moderately rotating stars, which is linked to the interplay between the hydrogen- and helium-burning regions. Conclusions.The stars in the present grid are interesting candidates as sources of nitrogen-enrichment in the early Universe. Indeed, they may have formed very early on from material previously enriched by the massive short-lived Population III stars, and as such constitute a very important piece in the puzzle that is the history of the Universe. 
    more » « less
  2. Abstract Cool, dusty interstellar material plays an important role in the chemical evolution of galaxies. We present an analysis of this material across galaxy type through a spatially resolved spectral stacking analysis of galaxies from the MaNGA survey. With stellar population synthesis, we isolate neutral gas signals from resonance lines, comparing outcomes across model types, galactic geometry, and host stellar mass and age. We find that both synthetic and empirical models fail to capture the range of galactic chemical abundances. There is also notable Naicontamination from the Galaxy’s interstellar medium (ISM) in the MILES empirical stellar library. We are unable to reliably determine the column density of the gas due to the accuracy of absorption measurements, but differential analysis across radius and inclination reveals consistent and significant path-length dependent absorption in the equivalent width of Nai. We note similar but lesser trends in a narrow Caiiindex. We find no trends in Caior in a broad Caiiindex, indicating its ISM insensitivity and providing evidence in favor of its utility in determining the age and chemical content of stellar populations. Our data shows there is a cool ISM component in most external galaxies withDn(4000) < 1.7 that can be traced by Nai. Lastly, we caution that the characterization of gas kinematics traced by Naiin such low-resolution spectra is subject to systematic effects due to the chosen approach to stellar population modeling. 
    more » « less
  3. Abstract We explore neutrino emission from nonrotating, single-star models across six initial metallicities and 70 initial masses from the zero-age main sequence to the final fate. Overall, across the mass spectrum, we find metal-poor stellar models tend to have denser, hotter, and more massive cores with lower envelope opacities, larger surface luminosities, and larger effective temperatures than their metal-rich counterparts. Across the mass–metallicity plane we identify the sequence (initial CNO →14N →22Ne →25Mg →26Al →26Mg →30P →30Si) as making primary contributions to the neutrino luminosity at different phases of evolution. For the low-mass models we find neutrino emission from the nitrogen flash and thermal pulse phases of evolution depend strongly on the initial metallicity. For the high-mass models, neutrino emission at He-core ignition and He-shell burning depends strongly on the initial metallicity. Antineutrino emission during C, Ne, and O burning shows a strong metallicity dependence with22Ne(α,n)25Mg providing much of the neutron excess available for inverse-βdecays. We integrate the stellar tracks over an initial mass function and time to investigate the neutrino emission from a simple stellar population. We find average neutrino emission from simple stellar populations to be 0.5–1.2 MeV electron neutrinos. Lower metallicity stellar populations produce slightly larger neutrino luminosities and averageβdecay energies. This study can provide targets for neutrino detectors from individual stars and stellar populations. We provide convenient fitting formulae and open access to the photon and neutrino tracks for more sophisticated population synthesis models. 
    more » « less
  4. Context.Stars with initial mass above roughly 8Mwill evolve to form a core made of iron group elements, at which point no further exothermic nuclear reactions between charged nuclei may prevent the core collapse. Electron capture, neutrino losses, and the photo-disintegration of heavy nuclei trigger the collapse of these stars. Models at the brink of core collapse are produced using stellar evolution codes, and these pre-collapse models may be used in the study of the subsequent dynamical evolution (including their explosion as supernovae and the formation of compact remnants such as neutron stars or black holes). Aims.We upgraded the physical ingredients employed by the GENeva stellar Evolution Code, GENEC, so that it covers the regime of high-temperatures and high-densities required to produce the progenitors of core-collapse. Our ultimate goal is producing pre-supernova models with GENEC, not only right before collapse, but also during the late phases (silicon and oxygen burning). Methods.We have improved GENEC in three directions: equation of state, the nuclear reaction network, and the radiative and conductive opacities adapted for the computation of the advanced phases of evolution. We produce a small grid of pre-supernova models of stars with zero age main sequence masses of 15 M, 20 M, and 25 Mat solar and less than half solar metallicities. The results are compared with analogous models produced with the MESA code. Results.The global properties of our new models, particularly of their inner cores, are comparable to models computed with MESA and pre-existing progenitors in the literature. Between codes the exact shell structure varies, and impacts explosion predictions. Conclusions.Using GENEC with state-of-the-art physics, we have produced massive stellar progenitors prior to collapse. These progenitors are suitable for follow-up studies, including the dynamical collapse and supernova phases. Larger grids of supernova progenitors are now feasible, with the potential for further dynamical evolution. 
    more » « less
  5. ABSTRACT Increasingly, uncertainties in predictions from galaxy formation simulations (at sub-Milky Way masses) are dominated by uncertainties in stellar evolution inputs. In this paper, we present the full set of updates from the Feedback In Realistic Environment (FIRE)-2 version of the FIRE project code, to the next version, FIRE-3. While the transition from FIRE-1 to FIRE-2 focused on improving numerical methods, here we update the stellar evolution tracks used to determine stellar feedback inputs, e.g. stellar mass-loss (O/B and AGB), spectra (luminosities and ionization rates), and supernova rates (core-collapse and Ia), as well as detailed mass-dependent yields. We also update the low-temperature cooling and chemistry, to enable improved accuracy at $$T \lesssim 10^{4}\,$$K and densities $$n\gg 1\, {\rm cm^{-3}}$$, and the meta-galactic ionizing background. All of these synthesize newer empirical constraints on these quantities and updated stellar evolution and yield models from a number of groups, addressing different aspects of stellar evolution. To make the updated models as accessible as possible, we provide fitting functions for all of the relevant updated tracks, yields, etc, in a form specifically designed so they can be directly ‘plugged in’ to existing galaxy formation simulations. We also summarize the default FIRE-3 implementations of ‘optional’ physics, including spectrally resolved cosmic rays and supermassive black hole growth and feedback. 
    more » « less