skip to main content

Title: Stellar Neutrino Emission across the Mass–Metallicity Plane

We explore neutrino emission from nonrotating, single-star models across six initial metallicities and 70 initial masses from the zero-age main sequence to the final fate. Overall, across the mass spectrum, we find metal-poor stellar models tend to have denser, hotter, and more massive cores with lower envelope opacities, larger surface luminosities, and larger effective temperatures than their metal-rich counterparts. Across the mass–metallicity plane we identify the sequence (initial CNO →14N →22Ne →25Mg →26Al →26Mg →30P →30Si) as making primary contributions to the neutrino luminosity at different phases of evolution. For the low-mass models we find neutrino emission from the nitrogen flash and thermal pulse phases of evolution depend strongly on the initial metallicity. For the high-mass models, neutrino emission at He-core ignition and He-shell burning depends strongly on the initial metallicity. Antineutrino emission during C, Ne, and O burning shows a strong metallicity dependence with22Ne(α,n)25Mg providing much of the neutron excess available for inverse-βdecays. We integrate the stellar tracks over an initial mass function and time to investigate the neutrino emission from a simple stellar population. We find average neutrino emission from simple stellar populations to be 0.5–1.2 MeV electron neutrinos. Lower metallicity stellar populations produce slightly larger neutrino luminosities and averageβdecay energies. This study can provide targets for neutrino detectors from individual stars and stellar populations. We provide convenient fitting formulae and open access to the photon and neutrino tracks for more sophisticated population synthesis models.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Medium: X Size: Article No. 5
Article No. 5
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spectroscopic studies of extreme-ionization galaxies (EIGs) are critical to our understanding of exotic systems throughout cosmic time. These EIGs exhibit spectral features requiring >54.42 eV photons: the energy needed to ionize helium into He2+fully and emit Heiirecombination lines. Spectroscopic studies of EIGs can probe exotic stellar populations or accretion onto intermediate-mass black holes (∼102–105M), which are the possibly key contributors to the reionization of the Universe. To facilitate the use of EIGs as probes of high-ionization systems, we focus on ratios constructed from several rest-frame UV/optical emission lines: [Oiii]λ5008, Hβ, [Neiii]λ3870, [Oii]λλ3727, 3729, and [Nev]λ3427. These lines probe the relative intensity at energies of 35.12, 13.62, 40.96, 13.62, and 97.12 eV, respectively, covering a wider range of ionization than traced by other common rest-frame UV/optical techniques. We use the ratios of these lines ([Nev]/[Neiii] ≡ Ne53, [Oiii]/Hβ, and [Neiii]/[Oii]), which are nearby in wavelength, mitigating the effects of dust attenuation and uncertainties in flux calibration. We make predictions from photoionization models constructed fromCloudythat use a broad range of stellar populations and black hole accretion models to explore the sensitivity of these line ratios to changes in the ionizing spectrum. We compare our models to observations from the Hubble Space Telescope and JWST of galaxies with strong high-ionization emission lines atz∼ 0,z∼ 2, and 5 <z< 8.5. We show that the Ne53 ratio can separate galaxies with ionization from “normal” stellar populations from those with active galactic nuclei and even “exotic” Population III models. We introduce new selection methods to identify galaxies with photoionization driven by Population III stars or intermediate-mass black hole accretion disks that could be identified in upcoming high-redshift spectroscopic surveys.

    more » « less
  2. Abstract The interplay and correlation between the $$^{22}$$ 22 Ne $$(\alpha ,\gamma )^{26}$$ ( α , γ ) 26 Mg and the competing $$^{22}$$ 22 Ne $$(\alpha ,n)^{25}$$ ( α , n ) 25 Mg reaction plays an important role for the interpretation of the $$^{22}$$ 22 Ne $$(\alpha ,n)^{25}$$ ( α , n ) 25 Mg reaction as a neutron source in the s - and n -processes. This paper provides a summary and new data on the $$\alpha $$ α -cluster and single-particle structure of the compound nucleus $$^{26}$$ 26 Mg and the impact on the reaction rate of these two competing processes in stellar helium burning environments. 
    more » « less
  3. Abstract

    Many of the short-lived radioactive nuclei that were present in the early solar system can be produced in massive stars. In the first paper in this series, we focused on the production of26Al in massive binaries. In our second paper, we considered rotating single stars; two more short-lived radioactive nuclei,36Cl and41Ca; and the comparison to the early solar system data. In this work, we update our previous conclusions by further considering the impact of binary interactions. We used the MESA stellar evolution code with an extended nuclear network to compute massive (10–80M), binary stars at various initial periods and solar metallicity (Z= 0.014), up to the onset of core collapse. The early solar system abundances of26Al and41Ca can be matched self-consistently by models with initial masses ≥25M, while models with initial primary masses ≥35Mcan also match36Cl. Almost none of the models provide positive net yields for19F, while for22Ne the net yields are positive from 30Mand higher. This leads to an increase by a factor of approximately 4 in the amount of22Ne produced by a stellar population of binary stars, relative to single stars. In addition, besides the impact on the stellar yields, our 10Mprimary star undergoing Case A mass transfer ends its life as a white dwarf instead of as a core-collapse supernova. This demonstrates that binary interactions can also strongly impact the evolution of stars close to the supernova boundary.

    more » « less
  4. Abstract

    We investigate dust attenuation and its dependence on viewing angle for 308 star-forming galaxies at 1.3 ≤z≤ 2.6 from the MOSFIRE Deep Evolution Field survey. We divide galaxies with a detected Hαemission line and coverage of Hβinto eight groups by stellar mass, star formation rate (SFR), and inclination (i.e., axis ratio), and we then stack their spectra. From each stack, we measure the Balmer decrement and gas-phase metallicity, and then we compute the medianAVand UV continuum spectral slope (β). First, we find that none of the dust properties (Balmer decrement,AV, orβ) varies with the axis ratio. Second, both stellar and nebular attenuation increase with increasing galaxy mass, showing little residual dependence on SFR or metallicity. Third, nebular emission is more attenuated than stellar emission, and this difference grows even larger at higher galaxy masses and SFRs. Based on these results, we propose a three-component dust model in which attenuation predominantly occurs in star-forming regions and large, dusty star-forming clumps, with minimal attenuation in the diffuse ISM. In this model, nebular attenuation primarily originates in clumps, while stellar attenuation is dominated by star-forming regions. Clumps become larger and more common with increasing galaxy mass, creating the above mass trends. Finally, we argue that a fixed metal yield naturally leads to mass regulating dust attenuation. Infall of low-metallicity gas increases the SFR and lowers the metallicity, but leaves the dust column density mostly unchanged. We quantify this idea using the Kennicutt–Schmidt and fundamental metallicity relations, showing that galaxy mass is indeed the primary driver of dust attenuation.

    more » « less
  5. Abstract

    We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range toZ= 10−6toZ= 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity rangeZ= 10−4toZ= 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions betweenX= 0 andX= 0.1 includingX= 10−2, 10−3, 10−4, 10−5, 10−6that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables inMESAand find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity.

    more » « less