skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 12, 2026

Title: The Effect of Rayleigh-Love Coupling in an Anisotropic Medium
Summary For a weakly anisotropic medium, Rayleigh and Love wave phase speeds at angular frequency ω and propagation azimuth ψ are given approximately by V(ω, ψ) = A0 + A2ccos 2ψ + A2ssin 2ψ + A4ccos 4ψ + A4ssin 4ψ. Earlier theories of the propagation of surface waves in anisotropic media based on non-degenerate perturbation theory predict that the dominant components are expected to be 2ψ for Rayleigh waves and 4ψ for Love waves. This paper is motivated by recent observations of the the 2ψ component for Love waves and 4ψ for Rayleigh waves, referred to here as “unexpected anisotropy”. To explain these observations, we present a quasi-degenerate theory of Rayleigh-Love coupling in a weakly anisotropic medium based on Hamilton’s Principle in Cartesian coordinates, benchmarking this theory with numerical results based on SPECFEM3D. We show that unexpected anisotropy is expected to be present when Rayleigh-Love coupling is strong and recent observations of Rayleigh and Love wave 2ψ and 4ψ anisotropy can be fit successfully with physically plausible models of a depth-dependent tilted transversely isotropic (TTI) medium. In addition, when observations of the 2ψ and 4ψ components of Rayleigh and Love anisotropy are used in the inversion, the ellipticity parameter ηX, introduced here, is better constrained, we can constrain the absolute dip direction based on polarization measurements, and we provide evidence that the mantle should be modeled as a tilted orthorhombic medium rather than a TTI medium. Ignoring observations of unexpected anisotropy may bias the estimated seismic model significantly. We also provide information about the polarization of the quasi-Love waves and coupling between fundamental mode Love and overtone Rayleigh waves in both continental and oceanic settings. The theory of SV-SH coupling for horizontally propagating body waves is presented for comparison with the surface wave theory, with emphasis on results for a TTI medium.  more » « less
Award ID(s):
1952209
PAR ID:
10631893
Author(s) / Creator(s):
;
Publisher / Repository:
Geophysical Journal International
Date Published:
Journal Name:
Geophysical Journal International
ISSN:
0956-540X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Two types of surface wave anisotropy are observed regularly by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We show that a new data set of Love and Rayleigh wave isotropic phase speeds and Rayleigh wave azimuthal anisotropy observed within and surrounding eastern Tibet can be explained simultaneously by modeling the crust as a depth-dependent tilted hexagonally symmetric (THS) medium. We specify the THS medium with depth-dependent hexagonally symmetric elastic tensors tilted and rotated through dip and strike angles and estimate these quantities using a Bayesian Monte Carlo inversion to produce a 3-D model of the crust and uppermost mantle on a 0.5° × 0.5° spatial grid. In the interior of eastern Tibet and in the Yunnan-Guizhou plateau, we infer a steeply dipping THS upper crustal medium overlying a shallowly dipping THS medium in the middle-to-lower crust. Such vertical stratification of anisotropy may reflect a brittle to ductile transition in which shallow fractures and faults control upper crustal anisotropy and the crystal-preferred orientation of anisotropic (perhaps micaceous) minerals governs the anisotropy of the deeper crust. In contrast, near the periphery of the Tibetan Plateau the anisotropic medium is steeply dipping throughout the entire crust, which may be caused by the reorientation of the symmetry axes of deeper crustal anisotropic minerals as crustal flows are rotated near the borders of Tibet. 
    more » « less
  2. Abstract Comprehensive observations of surface wave anisotropy across Alaska and the Aleutian subduction zone would help to improve understanding of its tectonics, mantle dynamics, and earthquake risk. We produce such observations, using stations from the USArray Transportable Array, regional networks across Alaska, and the Alaska Amphibious Community Seismic Experiment in the Alaska‐Aleutian subduction zone both onshore and offshore. Our data include Rayleigh and Love wave phase dispersion from earthquakes (28–85 s) and ambient noise two‐ and three‐station interferometry (8–50 s). Compared with using two‐station interferometry alone, three‐station interferometry significantly improves the signal‐to‐noise ratio and approximately doubles the number of measurements retained. Average differences between both isotropic and anisotropic tomographic maps constructed from different methods lie within their uncertainties, which is justification for combining the measurements. The composite tomographic maps include Rayleigh wave isotropy and azimuthal anisotropy from 8 to 85 s both onshore and offshore, and onshore Love wave isotropy from 8 to 80 s. In the Alaska‐Aleutian subduction zone, Rayleigh wave fast directions vary from trench parallel to perpendicular and back to parallel with increasing periods, apparently reflecting the effect of the subducted Pacific Plate. The tomographic maps provide a basis for inferring the 3‐D anisotropic crustal and uppermost mantle structure across Alaska and the Aleutian subduction zone. 
    more » « less
  3. SUMMARY The recent developments in array-based surface-wave tomography have made it possible to directly measure apparent phase velocities through wave front tracking. While directionally dependent measurements have been used to infer intrinsic $$2\psi $$ azimuthal anisotropy (with a 180° periodicity), a few studies have also demonstrated strong but spurious $$1\psi $$ azimuthal anisotropy (360° periodicity) near major structure boundaries particularly for long period surface waves. In such observations, Rayleigh waves propagating in the direction perpendicular to the boundary from the slow to the fast side persistently show a higher apparent velocity compared to waves propagating in the opposite direction. In this study, we conduct numerical and theoretical investigations to explore the effect of scattering on the apparent Rayleigh-wave phase velocity measurement. Using 2-D spectral-element numerical wavefield simulations, we first reproduce the observation that waves propagating in opposite directions show different apparent phase velocities when passing through a major velocity contrast. Based on mode coupling theory and the locked mode approximation, we then investigate the effect of the scattered fundamental-mode Rayleigh wave and body waves interfering with the incident Rayleigh wave separately. We show that scattered fundamental-mode Rayleigh waves, while dominating the scattered wavefield, mostly cause short wavelength apparent phase velocity variations that could only be studied if the station spacing is less than about one tenth of the surface wave wavelength. Scattered body waves, on the other hand, cause longer wavelength velocity variations that correspond to the existing real data observations. Because of the sensitivity of the $$1\psi $$ apparent anisotropy to velocity contrasts, incorporating such measurements in surface wave tomography could improve the resolution and sharpen the structural boundaries of the inverted model. 
    more » « less
  4. Many researchers have used the birefringence of P‑to‑S converted waves from the Moho discontinuity to constrain the anisotropy of Earth’s crust. However, this practice ignores the substantial influence that anisotropy has on the initial amplitude of the converted wave, which adds to the splitting acquired during its propagation from Moho to the seismometer. We find that large variations in Ps birefringence estimates with back-azimuth occur theoretically in the presence of P‑wave anisotropy, which normally accompanies S‑wave anisotropy. The variations are largest for crustal anisotropy with a tilted axis of symmetry, a geometry that is often neglected in birefringence interpretations, but is commonly found in Earth’s crust. We simulated globally-distributed P‑coda datasets for 36 distinct 4‑layer crustal models with combinations of elliptical shear anisotropy or compressional anisotropy, and also incorporated the higher-order anisotropic Backus parameter C. We tested both horizontal and tilted symmetry-axis geometries and tested the birefringence tradeoff associated with Ps converted phases at the top and bottom of a thin high‑ or low‑velocity basal layer. We computed composite receiver functions (RFs) with harmonic regression over back azimuth, using multipletaper correlation with moveout corrections for the epicentral distances of 471 events, to simulate a realistic data set. We estimate Ps birefringence from the radial and transverse RFs, a strategy that is similar to previous studies. We find that Ps splitting can be a useful indicator of bulk crustal anisotropy only under restricted circumstance, either in media with no compressional anisotropy, or if the symmetry axis is horizontal throughout. In other, more-realistic cases, the inferred fast polarization of Ps birefringence estimated from synthetic RFs tends either to drift with back-azimuth, form weak penalty-function minima, or return splitting times that depend on the thickness of an anisotropic layer, rather than the birefringence accumulated within it.   
    more » « less
  5. SUMMARY Surface waves are critical in detecting and locating seismic sources that do not produce much high-frequency radiation. For such sources, typical approaches using body waves for detecting and locating earthquakes are less effective. Slow earthquakes and exotic seismic sources often have this seismic radiation characteristic, and array analyses of surface waves recorded on global and regional seismic networks have proven effective in recognizing such sources. Most approaches have relied on Rayleigh waves, whereas Love waves have rarely been used. Here we develop a new approach using multiscale arrays to detect and locate seismic sources with both Love and Rayleigh surface waves. The method first forms three-station subarrays and then uses three-component records of the stations to independently estimate three sets of surface wave propagation directions and centroid arrival times. The subarray estimates are then assembled to locate seismic sources and their origin times. We find that using multiple, disconnected global networks improves location accuracy and that using both types of surface waves can enhance detection sensitivity and robustness. 
    more » « less