Abstract In light of the significant damage observed after earthquakes in Japan and New Zealand, enhanced performing seismic force‐resisting systems and energy dissipation devices are increasingly being utilized in buildings. Numerical models are needed to estimate the seismic response of these systems for seismic design or assessment. While there have been studies on modeling uncertainty, selecting the model features most important to response can remain ambiguous, especially if the structure employs less well‐established lateral force‐resisting systems and components. Herein, a global sensitivity analysis was used to address modeling uncertainty in specimens with elastic spines and force‐limiting connections (FLCs) physically tested at full‐scale at the E‐Defense shake table in Japan. Modeling uncertainty was addressed for both model class and model parameter uncertainty by varying primary models to develop several secondary models according to pre‐established uncertainty groups. Numerical estimates of peak story drift ratio and floor acceleration were compared to the results from the experimental testing program using confidence intervals and root‐mean‐square error. Metrics such as the coefficient of variation, variance, linear Pearson correlation coefficient, and Sobol index were used to gain intuition about each model feature's contribution to the dispersion in estimates of the engineering demands. Peak floor acceleration was found to be more sensitive to modeling uncertainty compared to story drift ratio. Assumptions for the spine‐to‐frame connection significantly impacted estimates of peak floor accelerations, which could influence future design methods for spines and FLC in enhanced lateral‐force resisting systems.
more »
« less
Force Limiting Connections to Mitigate Accelerations in Moment Resisting Frames with Pinned-Base Spines
Mid-rise moment resisting frames (MRF) which utilize supplemental pinned-base spines (spine) to prevent the formation of story mechanisms experience higher mode accelerations at near elastic spectral values. Force Limiting Connections (FLC) can be introduced to reduce the floor accelerations from the higher mode responses while having small impact on first-mode response and maintaining the story mechanism prevention from the spine. Results from nonlinear response history analysis (NRHA) of a 4-story MRF-Spine system show how floor accelerations for higher modes are reduced with the addition of FLC placed between the MRF and spine. Peak effective pseudo accelerations are utilized to show how pseudo spectral accelerations are reduced by the introduction of FLC. Full-scale testing of the 4-storyMRF-Spine structure supports the numerical results of theMRF-Spine andMRF-Spine-FLC numerical analyses. These results show the potential benefits of adding FLC to MRF-Spine systems.
more »
« less
- Award ID(s):
- 2309829
- PAR ID:
- 10632038
- Publisher / Repository:
- Springer Nature Switzerland
- Date Published:
- Page Range / eLocation ID:
- 958 to 968
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT This data paper presents data obtained from E‐Defense shake‐table tests of a full‐scale, steel moment‐resisting frame (MRF) supplemented with Spines. Herein, the Spines were pin‐based columns with sufficient stiffness and strength to distribute plastic deformation evenly over the height of the MRF. The specimen was tested under two configurations: first, with the Spine rigidly connected to the MRF; second, with the Spine connected to the MRF through force‐limiting connections (FLCs). Each specimen configuration underwent earthquake simulations using ground motions with two scale factors. The tests demonstrated the expected benefits of Spines as well as the disadvantage of inducing large floor accelerations in the structure and large shear forces in the Spines. The tests also demonstrated how the FLCs can mitigate these disadvantages. This data paper reports an overview of the tests, data archive structure, and potential use of the data. The data can be used, for example, to reproduce the observations presented by the authors, to compare the dynamic response of the specimen with building specimens tested in other shake‐table test programs, to validate numerical models against the measured specimen response, or to formulate classroom exercises on system identification of linear and nonlinear systems.more » « less
-
This dataset contains data from E-Defense shake-table tests of a full-scale, steel moment-resisting frame (MRF) supplemented with spines. Herein, the spines were pin-based columns with sufficient stiffness and strength to distribute plastic deformation evenly over the height of the MRF. The specimen was tested under two configurations: first, with the spine rigidly connected to the MRF; and second, with the spine connected to the MRF through Force-Limiting Connections (FLCs). The two structural systems were subjected to two ground motions adjusted to two different scales. The tests highlighted the expected benefits of spines as well as their drawbacks of inducing large floor acceleration in the MRF and large shear forces in the spines themselves. The tests also highlighted how the FLCs can mitigate such drawbacks of spines. The data may be used, for example, to reproduce the observations presented by the authors, to compare the dynamic response of the specimen with building specimens tested in other shake-table test programs, to validate numerical models against the measured specimen response, or to formulate classroom exercises on system identification of linear and nonlinear systems.more » « less
-
ABSTRACT This study integrates analytical and experimental research to develop an innovative shake table testing method called Floor Acceleration Simulation Test (FAST). The primary objective of FAST is to produce an essentially elastic response of a single‐story test specimen to replicate the floor acceleration time history including higher‐mode effects of a target floor in a multistory building experiencing inelastic behavior during an earthquake. The FAST method is well suited for experimental research where the absolute accelerations and the associated inertial forces of the floor diaphragms cannot be simulated by the majority of the conventional test methods. The proposed methodology is based on a transfer function in the frequency domain to compute the required input motion for testing. Considering the physical constraints of a given shake table test facility, guidelines with two response spectra to bracket the natural frequency of the test building are also presented for practical implementation. Experimental validation was carried out on a half‐scale, single‐story steel building featuring a composite floor slab, utilizing the NHERI@UCSD Large High‐Performance Outdoor Shake Table (LHPOST) facility. The results demonstrate the effectiveness of FAST, as both analytical predictions and experimental outcomes confirm its validity. Despite instances of measured floor acceleration amplitude exceeding the target response due to table input motion overshooting in this test program, test results confirmed that the FAST accurately reproduced the intended frequency content, indicative of higher mode effects in the multistory prototype building, in the single‐story test building.more » « less
-
Abstract. A novel structural system is being investigated collaboratively – by an international team including three U.S. universities, two Japanese universities and two major experimental research labs – as a means to protect essential facilities, such as hospitals, where damage to the building and its contents and occupant injuries must be prevented and where continuity of operation is imperative during large earthquakes. The new system employs practical structural components, including (1) flexible steel moment frames, (2) stiff steel elastic spines and (3) force-limiting connections (FLC) that connect the frames to the spines, to economically control building response and prevent damaging levels of displacement and acceleration. The moment frames serve as the economical primary element of the system to resist a significant proportion of the lateral load, dissipate energy through controlled nonlinear response and provide persistent positive lateral stiffness. The spines distribute response evenly over the height of the building and prevent story mechanisms, and the FLCs reduce higher-mode effects and provide supplemental energy dissipation. The Frame- Spine-FLC System development is focusing on new construction, but it also has potential for use in seismic retrofit of deficient existing buildings. This paper provides an overview of the ongoing research project, including selected FLC cyclic test results and a description of the full-scale shake-table testing of a building with the Frame-Spine-FLC System, which represents a hospital facility and includes realistic nonstructural components and medical equipment.more » « less
An official website of the United States government

