Abstract We extend the Calderón–Zygmund theory for nonlocal equations tostrongly coupled system of linear nonlocal equations {\mathcal{L}^{s}_{A}u=f}, where the operator {\mathcal{L}^{s}_{A}}is formally given by \mathcal{L}^{s}_{A}u=\int_{\mathbb{R}^{n}}\frac{A(x,y)}{|x-y|^{n+2s}}\frac{(x-%y)\otimes(x-y)}{|x-y|^{2}}(u(x)-u(y))\,dy. For {0<1}and {A:\mathbb{R}^{n}\times\mathbb{R}^{n}\to\mathbb{R}}taken to be symmetric and serving asa variable coefficient for the operator, the system under consideration is the fractional version of the classical Navier–Lamé linearized elasticity system. The study of the coupled system of nonlocal equations is motivated by its appearance in nonlocal mechanics, primarily in peridynamics. Our regularity result states that if {A(\,\cdot\,,y)}is uniformly Holder continuous and {\inf_{x\in\mathbb{R}^{n}}A(x,x)>0}, then for {f\in L^{p}_{\rm loc}}, for {p\geq 2}, the solution vector {u\in H^{2s-\delta,p}_{\rm loc}}for some {\delta\in(0,s)}.
more »
« less
On Strichartz estimates for many-body Schrödinger equation in the periodic setting
Abstract In this paper, we prove Strichartz estimates for many body Schrödinger equations in the periodic setting, specifically on tori {\mathbb{T}^{d}}, where {d\geq 3}. The results hold for both rational and irrational tori, and for small interacting potentials in a certain sense. Our work is based on the standard Strichartz estimate for Schrödinger operators on periodic domains, as developed in [J. Bourgain and C. Demeter,The proof of the l^{2}decoupling conjecture,Ann. of Math. (2) 182 2015, 1, 351–389]. As a comparison, this result can be regarded as a periodic analogue of [Y. Hong,Strichartz estimates forN-body Schrödinger operators with small potential interactions,Discrete Contin. Dyn. Syst. 37 2017, 10, 5355–5365] though we do not use the same perturbation method. We also note that the perturbation method fails due to the derivative loss property of the periodic Strichartz estimate.
more »
« less
- Award ID(s):
- 2306429
- PAR ID:
- 10632082
- Publisher / Repository:
- De Gruyter
- Date Published:
- Journal Name:
- Forum Mathematicum
- Volume:
- 37
- Issue:
- 3
- ISSN:
- 0933-7741
- Page Range / eLocation ID:
- 997 to 1008
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We introduce a distributional Jacobian determinant \det DV_{\beta}(Dv)in dimension two for the nonlinear complex gradient V_{\beta}(Dv)=\lvert Dv\rvert^{\beta}(v_{x_{1}},-v_{x_{2}})for any \beta>-1, whenever v\in W^{1\smash{,}2}_{\mathrm{loc}}and \beta\lvert Dv\rvert^{1+\beta}\in W^{1\smash{,}2}_{\mathrm{loc}}.This is new when \beta\neq 0.Given any planar ∞-harmonic function 𝑢, we show that such distributional Jacobian determinant \det DV_{\beta}(Du)is a nonnegative Radon measure with some quantitative local lower and upper bounds.We also give the following two applications. Applying this result with \beta=0, we develop an approach to build up a Liouville theorem, which improves that of Savin.Precisely, if 𝑢 is an ∞-harmonic function in the whole \mathbb{R}^{2}with \liminf_{R\to\infty}\inf_{c\in\mathbb{R}}\frac{1}{R}\barint_{B(0,R)}\lvert u(x)-c\rvert\,dx<\infty,then u=b+a\cdot xfor some b\in\mathbb{R}and a\in\mathbb{R}^{2}.Denoting by u_{p}the 𝑝-harmonic function having the same nonconstant boundary condition as 𝑢, we show that \det DV_{\beta}(Du_{p})\to\det DV_{\beta}(Du)as p\to\inftyin the weak-⋆ sense in the space of Radon measure.Recall that V_{\beta}(Du_{p})is always quasiregular mappings, but V_{\beta}(Du)is not in general.more » « less
-
Abstract We consider the problem of minimizing the lowest eigenvalue of the Schrödinger operator −Δ +Vin $${L}^{2}({\mathbb{R}}^{d})$$when the integral ∫e−tV dxis given for somet> 0. We show that the eigenvalue is minimal for the harmonic oscillator and derive a quantitative version of the corresponding inequality.more » « less
-
Abstract Let 𝜋 and \pi^{\prime}be cuspidal automorphic representations of \mathrm{GL}(n)and \mathrm{GL}(n^{\prime})with unitary central characters.We establish a new zero-free region for all \mathrm{GL}(1)-twists of the Rankin–Selberg 𝐿-function L(s,\pi\times\pi^{\prime}), generalizing Siegel’s celebrated work on Dirichlet 𝐿-functions.As an application, we prove the first unconditional Siegel–Walfisz theorem for the Dirichlet coefficients of -L^{\prime}(s,\pi\times\pi^{\prime})/L(s,\pi\times\pi^{\prime}).Also, for n\leq 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power 𝐿-functions L(s,\pi,\mathrm{Sym}^{n}\otimes\chi)of any cuspidal automorphic representation of \mathrm{GL}(2).more » « less
An official website of the United States government

