skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Depth profiles of soil temperature, moisture, and concentrations of CO2 and O2, HydroShare,
This data is an on-going collection of soil temperature, soil moisture, soil CO2 concentration, and soil O2 concentration starting in October 2021. We have installed sensors and probes at different soil depths across landscapes in five of the former Critical Zone Observatory locations (see the document named "sensor location"). Soil temperature and moisture are measured using Acclima SDI-12 sensors. Soil CO2 concentrations are measured using Eosense CO2 probes (switching to Vaisala GMP343 and GMP251 in 2023). Soil O2 concentrations are measured using Apogee SO-110-L-10 soil oxygen sensors. This dataset, along with our measurements of soil geomicrobiology and biogeochemistry (available in EarthChem), will help us understand the role of microbes as drivers of Critical Zone biogeochemistry and soil formation.  more » « less
Award ID(s):
2012878
PAR ID:
10632101
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
http://www.hydroshare.org/resource/9c53ab378b604a8e867cdda0d3ab72fb
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soil CO2 concentration and flux measurements are important in diverse fields, including geoscience, climate science, soil ecology, and agriculture. However, practitioners in these fields face difficulties with existing soil CO2 gas probes, which have had problems with high costs and frequent failures when deployed. Confronted with a recent research project’s need for long-term in-soil CO2 monitoring at a large number of sites in harsh environmental conditions, we developed our own CO2 logging system to reduce expense and avoid the expected failures of commercial instruments. Our newly developed soil probes overcome the central challenge of soil gas probes—surviving continuous exposure to soil moisture while remaining open to soil gases—via three approaches: a 3D printed housing (economical for small-scale production) following design principles that correct the usual water permeability flaw of 3D printed materials; passive moisture protection via a hydrophobic, CO2-permeable PTFE membrane; and active moisture protection via a low-power micro-dehumidifier. Our CO2 instrumentation performed well and yielded a high-quality dataset that includes signals related to a prescribed fire as well as seasonal and diel cycles. We expect our technology to support underground CO2 monitoring in fields where it is already practiced and stimulate its expansion into diverse new fields. 
    more » « less
  2. Abstract. Tropical ecosystems contribute significantly to global emissionsof methane (CH4), and landscape topography influences the rate ofCH4 emissions from wet tropical forest soils. However, extreme eventssuch as drought can alter normal topographic patterns of emissions. Here weexplain the dynamics of CH4 emissions during normal and droughtconditions across a catena in the Luquillo Experimental Forest, Puerto Rico.Valley soils served as the major source of CH4 emissions in a normalprecipitation year (2016), but drought recovery in 2015 resulted in dramaticpulses in CH4 emissions from all topographic positions. Geochemicalparameters including (i) dissolved organic carbon (C), acetate, and soil pH and (ii) hydrological parameters like soil moisture and oxygen (O2)concentrations varied across the catena. During the drought, soil moisturedecreased in the slope and ridge, and O2 concentrations increased in thevalley. We simulated the dynamics of CH4 emissions with theMicrobial Model for Methane Dynamics-Dual Arrhenius and Michaelis–Menten (M3D-DAMM), which couples a microbialfunctional group CH4 model with a diffusivity module for solute and gastransport within soil microsites. Contrasting patterns of soil moisture,O2, acetate, and associated changes in soil pH with topographyregulated simulated CH4 emissions, but emissions were also altered byrate-limited diffusion in soil microsites. Changes in simulated availablesubstrate for CH4 production (acetate, CO2, and H2) andoxidation (O2 and CH4) increased the predicted biomass ofmethanotrophs during the drought event and methanogens during droughtrecovery, which in turn affected net emissions of CH4. A variance-basedsensitivity analysis suggested that parameters related to aceticlasticmethanogenesis and methanotrophy were most critical to simulate net CH4emissions. This study enhanced the predictive capability for CH4emissions associated with complex topography and drought in wet tropicalforest soils. 
    more » « less
  3. Soil temperature and soil moisture have been measured at multiple locations in and around Baltimore Maryland to provide data on these variables in forests and lawns across an urban to rural gradient. In July 2011, we installed one Decagon Em50 Datalogger with five 5TM VWC/Temperature probes at four established forested, upslope, 20 x 20-m plots, two rural (ORU1, ORU2) and two urban (LEA1, LEA2), at 2 forested riparian sites at two transects along a stream (ORUR, ORLR), and two lawn plots on the campus of the University of Maryland Baltimore County campus (UMBC1, UMBC 2). Probes were buried horizontally at 10cm depth (except UMBC1 and UMBC2 where the five probes are mounted horizontally at a single location at depths of 50, 40, 30, 20 and 10 cm depth). At the upslope forested plots, the five probes are replicates. At the two riparian sites, probes are deployed in either "hummocks (drier, higher)" or in "hollows (lower, wetter)". Soil temperature and soil moisture were measured at hourly intervals on these plots beginning in July 2011. Earlier soil moisture data were collected monthly (1999-2011), and can be found in https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-bes&identifier=417 
    more » « less
  4. Abstract The sensitivity of soil carbon dynamics to climate change is a major uncertainty in carbon cycle models. Of particular interest is the response of soil biogeochemical cycles to variability in hydroclimatic states and the related quantification of soil memory. Toward this goal, the power spectra of soil hydrologic and biogeochemical states were analyzed using measurements of soil temperature, moisture, oxygen, and carbon dioxide at two sites. Power spectra indicated multiscale power law scaling across subhourly to annual timescales. Precipitation fluctuations were most strongly expressed in the soil biogeochemical signals at monthly to annual timescales. Soil moisture and temperature fluctuations were comparable in strength at one site, while temperature was dominant at the other. The effect of soil hydrologic, thermal, and biogeochemical processes on gas concentration variability was evidenced by low spectral entropy relative to the white noise character of precipitation. A full mass balance model was unable to capture high‐frequency soil temperature influence, indicating a gap in commonly used model assumptions. A linearized model was shown to capture the main features of the observed and modeled gas concentration spectra and demonstrated how the means and variances of soil moisture and temperature interact to produce the gas concentration spectra. Breakpoints in the spectra corresponded to the mean rate of gas efflux, providing a first‐order estimate of the soil biogeochemical integral timescale (∼1 min). These methods can be used to identify biogeochemical system dynamics to develop robust, process‐based soil biogeochemistry models that capture variability in addition to long‐term mean values. 
    more » « less
  5. Soil temperature and soil moisture have been measured at multiple locations in and around Baltimore Maryland to provide data on these variables in forests and lawns across an urban to rural gradient. In July 2011, we installed one Decagon Em50 Datalogger with five 5TM VWC/Temperature probes at four established forested, upslope, 20 x 20-m plots, two rural (ORU1, ORU2) and two urban (LEA1, LEA2), at 2 forested riparian sites at two transects along a stream (ORUR, ORLR), and two lawn plots on the campus of the University of Maryland Baltimore County campus (UMBC1, UMBC 2). Probes were buried horizontally at 10cm depth (except UMBC1 and UMBC2 where the five probes are mounted horizontally at a single location at depths of 50, 40, 30, 20 and 10 cm depth). At the upslope forested plots, the five probes are replicates. At the two riparian sites, probes are deployed in either "hummocks (drier, higher)" or in "hollows (lower, wetter)". Soil temperature and soil moisture were measured at hourly intervals on these plots beginning in July 2011. Earlier soil moisture data were collected monthly (1999-2011), and can be found in https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-bes&identifier=417 
    more » « less