skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Tracking the dynamic word-by-word incremental reading through multimeasures.
Award ID(s):
2118195
PAR ID:
10632131
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Psychological Association
Date Published:
Journal Name:
Journal of Experimental Psychology: Learning, Memory, and Cognition
Volume:
51
Issue:
8
ISSN:
0278-7393
Page Range / eLocation ID:
1324 to 1346
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Segmental models are sequence prediction models in which scores of hypotheses are based on entire variable-length segments of frames. We consider segmental models for whole-word ("acoustic-to-word") speech recognition, with the feature vectors defined using vector embeddings of segments. Such models are computationally challenging as the number of paths is proportional to the vocabulary size, which can be orders of magnitude larger than when using subword units like phones. We describe an efficient approach for end-to-end whole-word segmental models, with forward-backward and Viterbi decoding performed on a GPU and a simple segment scoring function that reduces space complexity. In addition, we investigate the use of pre-training via jointly trained acoustic word embeddings (AWEs) and acoustically grounded word embeddings (AGWEs) of written word labels. We find that word error rate can be reduced by a large margin by pre-training the acoustic segment representation with AWEs, and additional (smaller) gains can be obtained by pre-training the word prediction layer with AGWEs. Our final models improve over prior A2W models. 
    more » « less
  2. null (Ed.)
  3. Detractors of neural machine translation admit that while its translations are fluent, it sometimes gets key facts wrong. This is particularly important in simultaneous interpretation where translations have to be provided as fast as possible: before a sentence is complete. Yet, evaluations of simultaneous machine translation (SimulMT) fail to capture if systems correctly translate the most salient elements of a question: people, places, and dates. To address this problem, we introduce a downstream word-by-word question answering evaluation task (SimQA): given a source language question, translate the question word by word into the target language, and answer as soon as possible. SimQA jointly measures whether the SimulMT models translate the question quickly and accurately, and can reveal shortcomings in existing neural systems—hallucinating or omitting facts. 
    more » « less
  4. Direct acoustics-to-word (A2W) systems for end-to-end automatic speech recognition are simpler to train, and more efficient to decode with, than sub-word systems. However, A2W systems can have difficulties at training time when data is limited, and at decoding time when recognizing words outside the training vocabulary. To address these shortcomings, we investigate the use of recently proposed acoustic and acoustically grounded word embedding techniques in A2W systems. The idea is based on treating the final pre-softmax weight matrix of an AWE recognizer as a matrix of word embedding vectors, and using an externally trained set of word embeddings to improve the quality of this matrix. In particular we introduce two ideas: (1) Enforcing similarity at training time between the external embeddings and the recognizer weights, and (2) using the word embeddings at test time for predicting out-of-vocabulary words. Our word embedding model is acoustically grounded, that is it is learned jointly with acoustic embeddings so as to encode the words’ acoustic-phonetic content; and it is parametric, so that it can embed any arbitrary (potentially out-of-vocabulary) sequence of characters. We find that both techniques improve the performance of an A2W recognizer on conversational telephone speech. 
    more » « less