skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Midday Depression of Photosynthesis in Spartina alterniflora in a Virginia Salt Marsh
Abstract Salt marshes sequester a disproportionately large amount of carbon dioxide (CO2) from the atmosphere through high rates of photosynthesis and carbon burial. Climate change could potentially alter this carbon sink, particularly the response of vegetation to environmental stressors that can decrease photosynthesis. Midday depression of gross primary production (GPP), characterized by a decline in photosynthesis during midday, has been documented in multiple ecosystems as a response to drought, high temperatures, and other stressors linked to climate change. Yet, midday depression has not been thoroughly investigated in salt marsh ecosystems. Here, we show that the midday depression of GPP in aSpartina alterniflorasalt marsh on the Eastern Shore of Virginia was ubiquitous and occurred on 76% of the 283 days studied during the 2019–2022 growing seasons. GPP was estimated from eddy covariance measurements with flux partitioning. Using random forest, we found that the daily maximum tidal height and air temperature were the strongest predictors of midday depression of GPP, with lower high tides and warmer temperatures associated with more severe depression. This result suggests midday depression occurs when GPP decreases in the afternoon in response to salinity and water stress. To our knowledge, this is the first examination of midday depression of photosynthesis inS.alternifloraat the ecosystem scale. Our results highlight the potential of climate change to increase midday depression of photosynthesis and ultimately weaken the salt marsh carbon sink.  more » « less
Award ID(s):
1832221
PAR ID:
10632144
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
130
Issue:
9
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Salt marshes can attenuate nutrient pollution and store large amounts of ‘blue carbon’ in their soils, however, the value of sequestered carbon may be partially offset by nitrous oxide (N2O) emissions. Global climate and land use changes result in higher temperatures and inputs of reactive nitrogen (Nr) into coastal zones. Here, we investigated the combined effects of elevated temperature (ambient + 5℃) and Nr (double ambient concentrations) on nitrogen processing in marsh soils from two climatic regions (Quebec, Canada and Louisiana, U.S.) with two vegetation types,Sporobolus alterniflorus(= Spartina alterniflora) andSporobolus pumilus(= Spartina patens), using 24-h laboratory incubation experiments. Potential N2O fluxes increased from minor sinks to major sources following elevated treatments across all four marsh sites. One day of potential N2O emissions under elevated treatments (representing either long-term sea surface warming or short-term ocean heatwaves effects on coastal marsh soil temperatures alongside pulses of N loading) offset 15–60% of the potential annual ambient N2O sink, depending on marsh site and vegetation type. Rates of potential denitrification were generally higher in high latitude than in low latitude marsh soils under ambient treatments, with low ratios of N2O:N2indicating complete denitrification in high latitude marsh soils. Under elevated temperature and Nr treatments, potential denitrification was lower in high latitude soil but higher in low latitude soil as compared to ambient conditions, with incomplete denitrification observed except in LouisianaS. pumilus. Overall, our findings suggest that a combined increase in temperature and Nr has the potential to reduce salt marsh greenhouse gas (GHG) sinks under future global change scenarios. 
    more » « less
  2. Abstract Tidal salt marshes are important ecosystems in the global carbon cycle. Understanding their net carbon exchange with the atmosphere is required to accurately estimate their net ecosystem carbon budget (NECB). In this study, we present the interannual net ecosystem exchange (NEE) of CO2derived from eddy covariance (EC) for aSpartina alterniflorasalt marsh. We found interannual NEE could vary up to 3‐fold and range from −58.5 ± 11.3 to −222.9 ± 12.4 g C m−2 year−1in 2016 and 2020, respectively. Further, we found that atmospheric CO2fluxes were spatially dependent and varied across short distances. High biomass regions along tidal creek and estuary edges had up to 2‐fold higher annual NEE than lower biomass marsh interiors. In addition to the spatial variation of NEE, regions of the marsh represented by distinct canopy zonation responded to environmental drivers differently. Low elevation edges (with taller canopies) had a higher correlation with river discharge (R2 = 0.61), the main freshwater input into the system, while marsh interiors (with short canopies) were better correlated with in situ precipitation (R2 = 0.53). Lastly, we extrapolated interannual NEE to the wider marsh system, demonstrating the potential underestimation of annual NEE when not considering spatially explicit rates of NEE. Our work provides a basis for further research to understand the temporal and spatial dynamics of productivity in coastal wetlands, ecosystems which are at the forefront of experiencing climate change induced variability in precipitation, temperature, and sea level rise that have the potential to alter ecosystem productivity. 
    more » « less
  3. Abstract Salt marsh ecosystems are underrepresented in process‐based models due to their unique location across the terrestrial–aquatic interface. Particularly, the role of leaf nutrients on canopy photosynthesis (FA) remains unclear, despite their relevance for regulating vegetation growth. We combined multiyear information of canopy‐level nutrients and eddy covariance measurements with canopy surface hyperspectral remote sensing (CSHRS) to quantify the spatial and temporal variability of FAin a temperate salt marsh. We found that FAshowed a positive relationship with canopy‐level N at the ecosystem scale and for areas dominated bySpartina cynosuroides, but not for areas dominated by shortS. alterniflora. FAshowed a positive relationship with canopy‐level P, K, and Na, but a negative relationship with Fe, for areas associated withS. cynosuroides,S. alterniflora, and at the ecosystem scale. We used partial least squares regression (PLSR) with CSHRS and found statistically significant data–model agreements to predict canopy‐level nutrients and FA. The red‐edge electromagnetic region and ∼770 nm showed the highest contribution of variance in PLSR models for canopy‐level nutrients and FA, but we propose that underlying sediment biogeochemistry can complicate interpretation of reflectance measurements. Our findings highlight the relevance of spatial variability in salt marshes vegetation and the promising application of CSHRS for linking information of canopy‐level nutrients with FA. We call for further development of canopy surface hyperspectral methods and analyses across salt marshes to improve our understanding of how these ecosystems will respond to global environmental change. 
    more » « less
  4. Abstract Light use efficiency (LUE) of salt marshes has not been well studied but is central to production efficiency models (PEMs) used for estimating gross primary production (GPP). Salt marshes are typically dominated by a species monoculture, resulting in large areas with distinct morphology and physiology. We measured eddy covariance atmospheric CO2fluxes for two marshes dominated by a different species:Juncus roemerianusin Mississippi andSpartina alterniflorain Georgia. LUE for theJuncusmarsh (mean = 0.160 ± 0.004 g C mol−1photon), reported here for the first time, was on average similar to theSpartinamarsh (mean = 0.164 ± 0.003 g C mol−1photon). However,JuncusLUE had a greater range (0.073–0.49 g C mol−1photon) and higher variability (15.2%) than theSpartinamarsh (range: 0.035–0.36 g C mol−1photon; variability: 12.7%). We compared the responses of LUE across six environmental gradients.JuncusLUE was predominantly driven by cloudiness, photosynthetically active radiation (PAR), soil temperature, water table, and vapor pressure deficit.SpartinaLUE was driven by water table, air temperature, and cloudiness. We also tested how the definition of LUE (incident PAR vs. absorbed PAR) affected the magnitude of LUE and its response. We found LUE estimations using incident PAR underestimated LUE and masked day‐to‐day variability. Our findings suggest that salt marsh LUE parametrization should be species‐specific due to plant morphology and physiology and their geographic context. These findings can be used to improve PEMs for modeling blue carbon productivity. 
    more » « less
  5. Abstract Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change. 
    more » « less