Abstract CSS-T codes were recently introduced as quantum error-correcting codes that respect a transversal gate. A CSS-T code depends on a CSS-T pair, which is a pair of binary codes$$(C_1, C_2)$$ such that$$C_1$$ contains$$C_2$$ ,$$C_2$$ is even, and the shortening of the dual of$$C_1$$ with respect to the support of each codeword of$$C_2$$ is self-dual. In this paper, we give new conditions to guarantee that a pair of binary codes$$(C_1, C_2)$$ is a CSS-T pair. We define the poset of CSS-T pairs and determine the minimal and maximal elements of the poset. We provide a propagation rule for nondegenerate CSS-T codes. We apply some main results to Reed–Muller, cyclic and extended cyclic codes. We characterize CSS-T pairs of cyclic codes in terms of the defining cyclotomic cosets. We find cyclic and extended cyclic codes to obtain quantum codes with better parameters than those in the literature.
more »
« less
Quantum codes and irreducible products of characters
Abstract In a recent paper, we defined a type of weighted unitary design called a twisted unitary 1-group and showed that such a design automatically induced error-detecting quantum codes. We also showed that twisted unitary 1-groups correspond to irreducible products of characters thereby reducing the problem of code-finding to a computation in the character theory of finite groups. Using a combination of GAP computations and results from the mathematics literature on irreducible products of characters, we identify many new non-trivial quantum codes with unusual transversal gates. Transversal gates are of significant interest to the quantum information community for their central role in fault tolerant quantum computing. Most unitary$$\text {t}$$ -designs have never been realized as the transversal gate group of a quantum code. We, for the first time, find nontrivial quantum codes realizing nearly every finite group which is a unitary 2-design or better as the transversal gate group of some error-detecting quantum code.
more »
« less
- Award ID(s):
- 2231533
- PAR ID:
- 10632213
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Designs, Codes and Cryptography
- Volume:
- 93
- Issue:
- 8
- ISSN:
- 0925-1022
- Format(s):
- Medium: X Size: p. 2919-2930
- Size(s):
- p. 2919-2930
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It has recently been understood that the complete global symmetry of finite group topological gauge theories contains the structure of a higher-group. Here we study the higher-group structure in (3+1)D\mathbb{Z}_2 gauge theory with an emergent fermion, and point out that pumping chiralp+ip topological states gives rise to a\mathbb{Z}_{8} 0-form symmetry with mixed gravitational anomaly. This ordinary symmetry mixes with the other higher symmetries to form a 3-group structure, which we examine in detail. We then show that in the context of stabilizer quantum codes, one can obtain logical CCZ and CS gates by placing the code on a discretization ofT^3 (3-torus) andT^2 \rtimes_{C_2} S^1 (2-torus bundle over the circle) respectively, and pumpingp+ip states. Our considerations also imply the possibility of a logicalT gate by placing the code on\mathbb{RP}^3 and pumping ap+ip topological state.more » « less
-
Abstract We show that the Levin-Wen model of a unitary fusion category$${\mathcal {C}}$$ is a gauge theory with gauge symmetry given by the tube algebra$${\text {Tube}}({\mathcal {C}})$$ . In particular, we define a model corresponding to a$${\text {Tube}}({\mathcal {C}})$$ symmetry protected topological phase, and we provide a gauging procedure which results in the corresponding Levin-Wen model. In the case$${\mathcal {C}}=\textsf{Hilb}(G,\omega )$$ , we show how our procedure reduces to the twisted gauging of a trivalG-SPT to produce the Twisted Quantum Double. We further provide an example which is outside the bounds of the current literature, the trivial Fibbonacci SPT, whose gauge theory results in the doubled Fibonacci string-net. Our formalism has a natural topological interpretation with string diagrams living on a punctured sphere. We provide diagrams to supplement our mathematical proofs and to give the reader an intuitive understanding of the subject matter.more » « less
-
Abstract We prove that$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$ -depth local random quantum circuits with two qudit nearest-neighbor gates on aD-dimensional lattice withnqudits are approximatet-designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was$${{\,\textrm{poly}\,}}(t)\cdot n$$ due to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$$D=1$$ . We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($${{\,\mathrm{\textsf{PH}}\,}}$$ ) is infinite and that certain counting problems are$$\#{\textsf{P}}$$ -hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anti-concentration”, meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Our result improves the required depth for this level of anti-concentration from linear depth to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent experiment by the Google Quantum AI group to perform such a sampling task with 53 qubits on a two-dimensional lattice (Arute in Nature 574(7779):505–510, 2019; Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and confirms their conjecture that$$O(\sqrt{n})$$ depth suffices for anti-concentration. The proof is based on a previous construction oft-designs by Brandão et al. (2016), an analysis of how approximate designs behave under composition, and an extension of the quasi-orthogonality of permutation operators developed by Brandão et al. (2016). Different versions of the approximate design condition correspond to different norms, and part of our contribution is to introduce the norm corresponding to anti-concentration and to establish equivalence between these various norms for low-depth circuits. For random circuits with long-range gates, we use different methods to show that anti-concentration happens at circuit size$$O(n\ln ^2 n)$$ corresponding to depth$$O(\ln ^3 n)$$ . We also show a lower bound of$$\Omega (n \ln n)$$ for the size of such circuit in this case. We also prove that anti-concentration is possible in depth$$O(\ln n \ln \ln n)$$ (size$$O(n \ln n \ln \ln n)$$ ) using a different model.more » « less
-
Abstract Neutron-capture cross sections of neutron-rich nuclei are calculated using a Hauser–Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of Hauser-Feshbach code used to calculate the neutron-capture cross section of a short-lived nucleus. The neutron-capture cross section for$$^{73}\hbox {Zn}$$ (n,$$\gamma $$ )$$^{74}\hbox {Zn}$$ was calculated using three Hauser-Feshbach statistical model codes: TALYS, CoH, and EMPIRE. The calculation was first performed without any changes to the default settings in each code. Then an experimentally obtained nuclear level density (NLD) and$$\gamma $$ -ray strength function ($$\gamma \hbox {SF}$$ ) were included. Finally, the nuclear structure information was made consistent across the codes. The neutron-capture cross sections obtained from the three codes are in good agreement after including the experimentally obtained NLD and$$\gamma \hbox {SF}$$ , accounting for differences in the underlying nuclear reaction models, and enforcing consistent approximations for unknown nuclear data. It is possible to use consistent inputs and nuclear physics to reduce the differences in the calculated neutron-capture cross section from different Hauser-Feshbach codes. However, ensuring the treatment of the input of experimental data and other nuclear physics are similar across multiple codes requires a careful investigation. For this reason, more complete documentation of the inputs and physics chosen is important.more » « less
An official website of the United States government
