skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Essentially tight bounds for rainbow cycles in proper edge‐colourings
Abstract An edge‐coloured graph is said to berainbowif no colour appears more than once. Extremal problems involving rainbow objects have been a focus of much research over the last decade as they capture the essence of a number of interesting problems in a variety of areas. A particularly intensively studied question due to Keevash, Mubayi, Sudakov and Verstraëte from 2007 asks for the maximum possible average degree of a properly edge‐coloured graph on vertices without a rainbow cycle. Improving upon a series of earlier bounds, Tomon proved an upper bound of for this question. Very recently, Janzer–Sudakov and Kim–Lee–Liu–Tran independently removed the term in Tomon's bound, showing a bound of . We prove an upper bound of for this maximum possible average degree when there is no rainbow cycle. Our result is tight up to the term, and so, it essentially resolves this question. In addition, we observe a connection between this problem and several questions in additive number theory, allowing us to extend existing results on these questions for abelian groups to the case of non‐abelian groups.  more » « less
Award ID(s):
2349013
PAR ID:
10632324
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Proceedings of the London Mathematical Society
Volume:
130
Issue:
4
ISSN:
0024-6115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Alinear forestis a disjoint union of path graphs. Thelinear arboricity of a graph, denoted by , is the least number of linear forests into which the graph can be partitioned. Clearly, for any graph of maximum degree . For the upper bound, the long‐standingLinear Arboricity Conjecture(LAC) due to Akiyama, Exoo, and Harary from 1981 asserts that . A graph is apseudoforestif each of its components contains at most one cycle. In this paper, we prove thatthe union of any two pseudoforests of maximum degree up to 3 can be decomposed into three linear forests. Combining it with a recent result of Wdowinski on the minimum number of pseudoforests into which a graph can be decomposed, we prove that the LAC holds for the following simple graph classes: ‐degenerate graphs with maximum degree , all graphs on nonnegative Euler characteristic surfaces provided the maximum degree , and graphs on negative Euler characteristic surfaces provided the maximum degree , as well as graphs with no ‐minor satisfying some conditions on maximum degrees. 
    more » « less
  2. Abstract Does every $$n$$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $$O(1/\sqrt{n})$$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $$n$$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $$O(\sqrt{\log n / n})$$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups. 
    more » « less
  3. null (Ed.)
    Abstract In this paper, we prove a tight minimum degree condition in general graphs for the existence of paths between two given endpoints whose lengths form a long arithmetic progression with common difference one or two. This allows us to obtain a number of exact and optimal results on cycle lengths in graphs of given minimum degree, connectivity or chromatic number. More precisely, we prove the following statements by a unified approach: 1. Every graph $$G$$ with minimum degree at least $k+1$ contains cycles of all even lengths modulo $$k$$; in addition, if $$G$$ is $$2$$-connected and non-bipartite, then it contains cycles of all lengths modulo $$k$$. 2. For all $$k\geq 3$$, every $$k$$-connected graph contains a cycle of length zero modulo $$k$$. 3. Every $$3$$-connected non-bipartite graph with minimum degree at least $k+1$ contains $$k$$ cycles of consecutive lengths. 4. Every graph with chromatic number at least $k+2$ contains $$k$$ cycles of consecutive lengths. The 1st statement is a conjecture of Thomassen, the 2nd is a conjecture of Dean, the 3rd is a tight answer to a question of Bondy and Vince, and the 4th is a conjecture of Sudakov and Verstraëte. All of the above results are best possible. 
    more » « less
  4. We study the problem of fairly allocating a set of indivisible goods among n agents with additive valuations. Envy freeness up to any good (EFX) is arguably the most compelling fairness notion in this context. However, the existence of an EFX allocation has not been settled and is one of the most important problems in fair division. Toward resolving this question, many impressive results show the existence of its relaxations. In particular, it is known that 0.618-EFX allocations exist and that EFX allocation exists if we do not allocate at most (n-1) goods. Reducing the number of unallocated goods has emerged as a systematic way to tackle the main question. For example, follow-up works on three- and four-agents cases, respectively, allocated two more unallocated goods through an involved procedure. In this paper, we study the general case and achieve sublinear numbers of unallocated goods. Through a new approach, we show that for every [Formula: see text], there always exists a [Formula: see text]-EFX allocation with sublinear number of unallocated goods and high Nash welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory. We define the notion of rainbow cycle number [Formula: see text] in directed graphs. For all [Formula: see text] is the largest k such that there exists a k-partite graph [Formula: see text], in which each part has at most d vertices (i.e., [Formula: see text] for all [Formula: see text]); for any two parts Viand Vj, each vertex in Vihas an incoming edge from some vertex in Vjand vice versa; and there exists no cycle in G that contains at most one vertex from each part. We show that any upper bound on [Formula: see text] directly translates to a sublinear bound on the number of unallocated goods. We establish a polynomial upper bound on [Formula: see text], yielding our main result. Furthermore, our approach is constructive, which also gives a polynomial-time algorithm for finding such an allocation. Funding: J. Garg was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1942321]. R. Mehta was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1750436]. 
    more » « less
  5. In a recent breakthrough, Kelley and Meka (FOCS 2023) obtained a strong upper bound on the density of sets of integers without non-trivial three-term arithmetic progressions. In this work, we extend their result, establishing similar bounds for all linear patterns defined by binary systems of linear forms, where “binary” indicates that every linear form depends on exactly two variables. Prior to our work, no strong bounds were known for such systems even in the finite field model setting. A key ingredient in our proof is a graph counting lemma. The classical graph counting lemma, developed by Thomason (Random Graphs 1985) and Chung, Graham, and Wilson (Combinatorica 1989), is a fundamental tool in combinatorics. For a fixed graph H, it states that the number of copies of H in a pseudorandom graph G is similar to the number of copies of H in a purely random graph with the same edge density as G. However, this lemma is only non-trivial when G is a dense graph. In this work, we prove a graph counting lemma that is also effective when G is sparse. Moreover, our lemma is well-suited for density increment arguments in additive number theory. As an immediate application, we obtain a strong bound for the Turán problem in abelian Cayley sum graphs: let Γ be a finite abelian group with odd order. If a Cayley sum graph on Γ does not contain any r-elique as a sub graph, it must have at most 2−Ωr(log1/16|Γ|)⋅|Γ|2 edges. These results hinge on the technology developed by Kelley and Meka and the follow-up work by Kelley, Lovett, and Meka (STOC 2024). 
    more » « less