We study the problem of distributing a set of indivisible goods among agents with additive valuations in afairmanner. The fairness notion under consideration is envy-freeness up toanygood (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this article, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture of Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some goods are not allocated) with higher Nash welfare than that of any complete EFX allocation.
more »
« less
This content will become publicly available on November 1, 2025
Improving Envy Freeness up to Any Good Guarantees Through Rainbow Cycle Number
We study the problem of fairly allocating a set of indivisible goods among n agents with additive valuations. Envy freeness up to any good (EFX) is arguably the most compelling fairness notion in this context. However, the existence of an EFX allocation has not been settled and is one of the most important problems in fair division. Toward resolving this question, many impressive results show the existence of its relaxations. In particular, it is known that 0.618-EFX allocations exist and that EFX allocation exists if we do not allocate at most (n-1) goods. Reducing the number of unallocated goods has emerged as a systematic way to tackle the main question. For example, follow-up works on three- and four-agents cases, respectively, allocated two more unallocated goods through an involved procedure. In this paper, we study the general case and achieve sublinear numbers of unallocated goods. Through a new approach, we show that for every [Formula: see text], there always exists a [Formula: see text]-EFX allocation with sublinear number of unallocated goods and high Nash welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory. We define the notion of rainbow cycle number [Formula: see text] in directed graphs. For all [Formula: see text] is the largest k such that there exists a k-partite graph [Formula: see text], in which each part has at most d vertices (i.e., [Formula: see text] for all [Formula: see text]); for any two parts Viand Vj, each vertex in Vihas an incoming edge from some vertex in Vjand vice versa; and there exists no cycle in G that contains at most one vertex from each part. We show that any upper bound on [Formula: see text] directly translates to a sublinear bound on the number of unallocated goods. We establish a polynomial upper bound on [Formula: see text], yielding our main result. Furthermore, our approach is constructive, which also gives a polynomial-time algorithm for finding such an allocation. Funding: J. Garg was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1942321]. R. Mehta was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1750436].
more »
« less
- PAR ID:
- 10572379
- Publisher / Repository:
- Mathematics of Operations Research (MOR)
- Date Published:
- Journal Name:
- Mathematics of Operations Research
- Volume:
- 49
- Issue:
- 4
- ISSN:
- 0364-765X
- Page Range / eLocation ID:
- 2323 to 2340
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study linear Fisher markets with satiation. In these markets, sellers have earning limits, and buyers have utility limits. Beyond applications in economics, they arise in the context of maximizing Nash social welfare when allocating indivisible items to agents. In contrast to markets with either earning or utility limits, markets with both limits have not been studied before. They turn out to have fundamentally different properties. In general, the existence of competitive equilibria is not guaranteed. We identify a natural property of markets (termed money clearing) that implies existence. We show that the set of equilibria is not always convex, answering a question posed in the literature. We design an FPTAS to compute an approximate equilibrium and prove that the problem of computing an exact equilibrium lies in the complexity class continuous local search ([Formula: see text]; i.e., the intersection of polynomial local search ([Formula: see text]) and polynomial parity arguments on directed graphs ([Formula: see text])). For a constant number of buyers or goods, we give a polynomial-time algorithm to compute an exact equilibrium. We show how (approximate) equilibria can be rounded and provide the first constant-factor approximation algorithm (with a factor of 2.404) for maximizing Nash social welfare when agents have capped linear (also known as budget-additive) valuations. Finally, we significantly improve the approximation hardness for additive valuations to [Formula: see text]. Funding: J. Garg was supported by the National Science Foundation [Grant CCF-1942321 (CAREER)]. M. Hoefer was supported by Deutsche Forschungsgemeinschaft [Grants Ho 3831/5-1, Ho 3831/6-1, and Ho 3831/7-1].more » « less
-
We study fair division of indivisible chores among n agents with additive disutility functions. Two well-studied fairness notions for indivisible items are envy-freeness up to one/any item (EF1/EFX) and the standard notion of economic efficiency is Pareto optimality (PO). There is a noticeable gap between the results known for both EF1 and EFX in the goods and chores settings. The case of chores turns out to be much more challenging. We reduce this gap by providing slightly relaxed versions of the known results on goods for the chores setting. Interestingly, our algorithms run in polynomial time, unlike their analogous versions in the goods setting.We introduce the concept of k surplus in the chores setting which means that up to k more chores are allocated to the agents and each of them is a copy of an original chore. We present a polynomial-time algorithm which gives EF1 and PO allocations with n-1 surplus.We relax the notion of EFX slightly and define tEFX which requires that the envy from agent i to agent j is removed upon the transfer of any chore from the i's bundle to j's bundle. We give a polynomial-time algorithm that in the chores case for 3 agents returns an allocation which is either proportional or tEFX. Note that proportionality is a very strong criterion in the case of indivisible items, and hence both notions we guarantee are desirable.more » « less
-
We study fair allocation of indivisible goods and chores among agents with lexicographic preferences---a subclass of additive valuations. In sharp contrast to the goods-only setting, we show that an allocation satisfying envy-freeness up to any item (EFX) could fail to exist for a mixture of objective goods and chores. To our knowledge, this negative result provides the first counterexample for EFX over (any subdomain of) additive valuations. To complement this non-existence result, we identify a class of instances with (possibly subjective) mixed items where an EFX and Pareto optimal allocation always exists and can be efficiently computed. When the fairness requirement is relaxed to maximin share (MMS), we show positive existence and computation for any mixed instance. More broadly, our work examines the existence and computation of fair and efficient allocations both for mixed items as well as chores-only instances, and highlights the additional difficulty of these problems vis-à-vis their goods-only counterparts.more » « less
-
A Simpler Approach to the EFX Problem Envy-freeness up to any item (EFX) has emerged as a compelling fairness notion in discrete fair division. However, its existence remains one of the biggest open problems in the field. In a breakthrough, Chaudhury et al. (2020) establish the existence of EFX allocations for three agents with additive valuations through intricate case analysis. The paper “EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number” by Akrami, Alon, Chaudhury, Garg, Mehlhorn, and Mehta offers a simpler approach for improving the EFX guarantee. They demonstrate the existence of EFX allocations for three agents when at least one has additive valuations (whereas the other two have general monotone valuations). Additionally, they nearly resolve a conjecture regarding the rainbow cycle number, leading to an (almost) tight bound for the existence of approximate EFX allocations with few unallocated items achievable through this approach.more » « less