A<sc>bstract</sc> We study a surface defect in the free and criticalO(N) vector models, defined by adding a quadratic perturbation localized on a two-dimensional subspace of thed-dimensional CFT. We compute the beta function for the corresponding defect renormalization group (RG) flow, and provide evidence that at long distances the system flows to a nontrivial defect conformal field theory (DCFT). We use epsilon and largeNexpansions to compute several physical quantities in the DCFT, finding agreement across different expansion methods. We also compute the defect free energy, and check consistency with the so-calledb-theorem for RG flows on surface defects.
more »
« less
This content will become publicly available on June 1, 2026
Surprises in the ordinary: O(N) invariant surface defect in the ϵ-expansion
A<sc>bstract</sc> We study anO(N) invariant surface defect in the Wilson-Fisher conformal field theory (CFT) ind= 4 –ϵdimensions. This defect is defined by mass deformation on a two-dimensional surface that generates localized disorder and is conjectured to factorize into a pair of ordinary boundary conditions ind= 3. We determine defect CFT data associated with the lightestO(N) singlet and vector operators up to the third order in theϵ-expansion, find agreements with results from numerical methods and provide support for the factorization proposal ind= 3. Along the way, we observe surprising non-renormalization properties for surface anomalous dimensions and operator-product-expansion coefficients in theϵ-expansion. We also analyze the full conformal anomalies for the surface defect.
more »
« less
- PAR ID:
- 10632423
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2025
- Issue:
- 6
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We study line defects in the fermionic CFTs in the Gross-Neveu-Yukawa universality class in dimensions 2< d <4. These CFTs may be described as the IR fixed points of the Gross-Neveu-Yukawa (GNY) model ind= 4 −ϵ, or as the UV fixed points of the Gross-Neveu (GN) model, which can be studied using the largeNexpansion in 2< d <4. These models admit natural line defects obtained by integrating over a line either the scalar field in the GNY description, or the fermion bilinear operator in the GN description. We compute the beta function for the defect RG flow using both the epsilon expansion and the largeNapproach, and find IR stable fixed points for the defect coupling, thus providing evidence for a non-trivial IR DCFT. We also compute some of the DCFT observables at the fixed point, and check that theg-function associated with the circular defect is consistent with theg-theorem for the defect RG flow.more » « less
-
A bstract We study monodromy defects in O ( N ) symmetric scalar field theories in d dimensions. After a Weyl transformation, a monodromy defect may be described by placing the theory on S 1 × H d− 1 , where H d− 1 is the hyperbolic space, and imposing on the fundamental fields a twisted periodicity condition along S 1 . In this description, the codimension two defect lies at the boundary of H d− 1 . We first study the general monodromy defect in the free field theory, and then develop the large N expansion of the defect in the interacting theory, focusing for simplicity on the case of N complex fields with a one-parameter monodromy condition. We also use the ϵ -expansion in d = 4 − ϵ , providing a check on the large N approach. When the defect has spherical geometry, its expectation value is a meaningful quantity, and it may be obtained by computing the free energy of the twisted theory on S 1 × H d− 1 . It was conjectured that the logarithm of the defect expectation value, suitably multiplied by a dimension dependent sine factor, should decrease under a defect RG flow. We check this conjecture in our examples, both in the free and interacting case, by considering a defect RG flow that corresponds to imposing alternate boundary conditions on one of the low-lying Kaluza-Klein modes on H d− 1 . We also show that, adapting standard techniques from the AdS/CFT literature, the S 1 × H d− 1 setup is well suited to the calculation of the defect CFT data, and we discuss various examples, including one-point functions of bulk operators, scaling dimensions of defect operators, and four-point functions of operator insertions on the defect.more » « less
-
A<sc>bstract</sc> We consider correlators for the flux of energy and charge in the background of operators with large global U(1) charge in conformal field theory (CFT). It has recently been shown that the corresponding Euclidean correlators generically admit a semiclassical description in terms of the effective field theory (EFT) for a conformal superfluid. We adapt the semiclassical description to Lorentzian observables and compute the leading large charge behavior of the flux correlators in general U(1) symmetric CFTs. We discuss the regime of validity of the large charge EFT for these Lorentzian observables and the subtleties in extending the EFT approach to subleading corrections. We also consider the Wilson-Fisher fixed point ind= 4 −ϵdimensions, which offers a specific weakly coupled realization of the general setup, where the subleading corrections can be systematically computed without relying on an EFT.more » « less
-
A<sc>bstract</sc> An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensionsd >2 on the spatial manifoldT2× ℝd−3which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduliτof the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2,ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the criticalO(N) model ind= 3 and holographic CFTs ind ≥3.more » « less
An official website of the United States government
