A<sc>bstract</sc> We study a surface defect in the free and criticalO(N) vector models, defined by adding a quadratic perturbation localized on a two-dimensional subspace of thed-dimensional CFT. We compute the beta function for the corresponding defect renormalization group (RG) flow, and provide evidence that at long distances the system flows to a nontrivial defect conformal field theory (DCFT). We use epsilon and largeNexpansions to compute several physical quantities in the DCFT, finding agreement across different expansion methods. We also compute the defect free energy, and check consistency with the so-calledb-theorem for RG flows on surface defects.
more »
« less
This content will become publicly available on June 1, 2026
Codimension one defects in free scalar field theory
A<sc>bstract</sc> We study various aspects of codimension one defects in free scalar field theory, with particular emphasis on line defects in two-dimensions. These defects are generically non-conformal, but include conformal and topological defects as special cases. Our analysis is based on the interplay between two complementary descriptions, the first involving matching conditions imposed on fields and their derivatives across the defect, and the second on the resummation of perturbation theory in terms of renormalized defect couplings. Using either description as appropriate we compute a variety of observables: correlators of fields in the presence of such defects; the defect anomalous dimension; multiple defects and their fusion; canonical quantization and instabilities; ring shaped defects with application to the g-theorem and the entanglement entropy of accelerating defects; defects on the torus and Cardy formulas for the asymptotic density of states of the defect Hilbert space; and quenches produced by spacelike defects. The simplicity of the model allows for explicit computation of all these quantities, and provides a starting point for more complicated theories involving interactions.
more »
« less
- Award ID(s):
- 2209700
- PAR ID:
- 10632576
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2025
- Issue:
- 6
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We study the operator algebra of extended conformal defects in more than two spacetime dimensions. Such algebra structure encodes the combined effect of multiple impurities on physical observables at long distances as well as the interactions among the impurities. These features are formalized by a fusion product which we define for a pair of defects, after isolating divergences that capture the effective potential between the defects, which generalizes the usual Casimir energy. We discuss general properties of the corresponding fusion algebra and contrast with the more familiar cases that involve topological defects. We also describe the relation to a different defect setup in the shape of a wedge. We provide explicit examples to illustrate these properties using line defects and interfaces in the Wilson-Fisher CFT and the Gross-Neveu(-Yukawa) CFT and determine the defect fusion data thereof.more » « less
-
A<sc>bstract</sc> We study anO(N) invariant surface defect in the Wilson-Fisher conformal field theory (CFT) ind= 4 –ϵdimensions. This defect is defined by mass deformation on a two-dimensional surface that generates localized disorder and is conjectured to factorize into a pair of ordinary boundary conditions ind= 3. We determine defect CFT data associated with the lightestO(N) singlet and vector operators up to the third order in theϵ-expansion, find agreements with results from numerical methods and provide support for the factorization proposal ind= 3. Along the way, we observe surprising non-renormalization properties for surface anomalous dimensions and operator-product-expansion coefficients in theϵ-expansion. We also analyze the full conformal anomalies for the surface defect.more » « less
-
A<sc>bstract</sc> We study classical wormhole solutions in 3D gravity with end-of-the-world (EOW) branes, conical defects, kinks, and punctures. These solutions compute statistical averages of an ensemble of boundary conformal field theories (BCFTs) related to universal asymptotics of OPE data extracted from the 2D conformal bootstrap. Conical defects connect BCFT bulk operators; branes join BCFT boundary intervals with identical boundary conditions; kinks (1D defects along branes) link BCFT boundary operators; and punctures (0D defects) are endpoints where conical defects terminate on branes. We provide evidence for a correspondence between the gravity theory and the ensemble. In particular, the agreement of theg-function dependence results from an underlying topological aspect of the on-shell EOW brane action, from which a BCFT analog of the Schlenker-Witten theorem also follows.more » « less
-
A<sc>bstract</sc> We give a general construction relating Narain rational conformal field theories (RCFTs) and associated 3d Chern-Simons (CS) theories to quantum stabilizer codes. Starting from an abelian CS theory with a fusion group consisting ofneven-order factors, we map a boundary RCFT to ann-qubit quantum code. When the relevant ’t Hooft anomalies vanish, we can orbifold our RCFTs and describe this gauging at the level of the code. Along the way, we give CFT interpretations of the code subspace and the Hilbert space of qubits while mapping error operations to CFT defect fields.more » « less
An official website of the United States government
