skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: A Comprehensive Investigation of the Two-Phonon Characteristics of Heat Conduction in Superlattices
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity κ on system length L, i.e., a κ-L maximum. However, such behavior has rarely been observed. In this work, we conduct extensive non-equilibrium molecular dynamics (NEMD) simulations, using the LAMMPS package, on both periodic superlattices (SLs) and aperiodic random multilayers (RMLs) constructed from Si/Ge and Lennard-Jones materials. By systematically varying acoustic contrast, interatomic bond strength, and average layer thickness, we examine the interplay between coherent and incoherent phonon transport in these systems. Our two-phonon model decomposition reveals that coherent phonons alone consistently exhibit a strong nonmonotonic κ-L. This localization signature is often masked by the diffusive, monotonically increasing contribution from incoherent phonons. We further extract the ballistic-limit mean free paths for both phonon types, and demonstrate that incoherent transport often dominates, thereby concealing localization effects. Our findings highlight the importance of decoupling coherent and incoherent phonon contributions in both simulations and experiments. This work provides new insights and design principles for achieving phonon Anderson localization in superlattice structures.  more » « less
Award ID(s):
2047109 1953300
PAR ID:
10632649
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Crystals
Volume:
15
Issue:
7
ISSN:
2073-4352
Page Range / eLocation ID:
654
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In both particle and wave descriptions of phonons, the dense, aperiodically arranged interfaces in aperiodic superlattices are expected to strongly attenuate thermal transport due to phonon-interface scattering or broken long-range coherence. However, non-trivial thermal conductivity is still observed in these structures. In this study, we reveal that incoherent modes propagating in the aperiodic superlattice can be converted, through interference, into coherent modes defined by an approximate dispersion relation. This conversion leads to high transmission across the aperiodic superlattice structure, which contains hundreds of interfaces, ultimately resulting in non-trivial thermal conductivity. Such incoherent-to-coherent mode-conversion behavior is extensively observed in periodic superlattices. This work suggests an effective strategy to manipulate the phonon dispersion relation through layer patterning or material choice, enabling precise control of phonon transmission across aperiodic superlattices. 
    more » « less
  2. Abstract Nanomeshes, often referred to as phononic crystals, have been extensively explored for their unique properties, including phonon coherence and ultralow thermal conductivity (κ). However, experimental demonstrations of phonon coherence are rare and indirect, often relying on comparison with numerical modeling. Notably, a significant aspect of phonon coherence, namely the disorder-induced reduction in κ observed in superlattices, has yet to be experimentally demonstrated. In this study, through atomistic modeling and spectral analysis, we systematically investigate and compare phonon transport behaviors in graphene nanomeshes, characterized by 1D line-like hole boundaries, and silicon nanomeshes, featuring 2D surface-like hole boundaries, while considering various forms of hole boundary roughness. Our findings highlight that to demonstrate disorder-induced reduction in κ of nanomeshes, optimal conditions include low temperature, smooth and planar hole boundaries, and the utilization of thick films composed of 3D materials. 
    more » « less
  3. Abstract Engineering of phonons, that is, collective lattice vibrations in crystals, is essential for manipulating physical properties of materials such as thermal transport, electron‐phonon interaction, confinement of lattice vibration, and optical polarization. Most approaches to phonon‐engineering have been largely limited to the high‐quality heterostructures of III–V compound semiconductors. Yet, artificial engineering of phonons in a variety of materials with functional properties, such as complex oxides, will yield unprecedented applications of coherent tunable phonons in future quantum acoustic devices. In this study, artificial engineering of phonons in the atomic‐scale SrRuO3/SrTiO3superlattices is demonstrated, wherein tunable phonon modes are observed via confocal Raman spectroscopy. In particular, the coherent superlattices led to the backfolding of acoustic phonon dispersion, resulting in zone‐folded acoustic phonons in the THz frequency domain. The frequencies can be largely tuned from 1 to 2 THz via atomic‐scale precision thickness control. In addition, a polar optical phonon originating from the local inversion symmetry breaking in the artificial oxide superlattices is observed, exhibiting emergent functionality. The approach of atomic‐scale heterostructuring of complex oxides will vastly expand material systems for quantum acoustic devices, especially with the viability of functionality integration. 
    more » « less
  4. Superlattices are a distinctive class of artificial nanostructures formed by the periodic stacking of two or more materials. The high density of interfaces in these structures often gives rise to exotic physical properties. In the context of thermal transport, it is well established that such interfaces can significantly scatter particle-like phonons while also inducing constructive or destructive interference in wave-like phonons, depending on the relationship between the phonons’ coherence lengths and the superlattice’s period thickness. In this work, we systematically investigate the effect of temperature on the spectral energy density of phonon modes in superlattices. Additionally, we examine how variations in superlattice period thickness influence phonon lifetimes and energy density. Our findings provide critical insights into the spectral phonon properties of superlattices, particularly in terms of their coherence and lifetimes. 
    more » « less
  5. Abstract The lattice thermal conductivity ( κ L ) of the monolayers of partial group-VA elements and binary compounds are systemically investigated by the first-principles calculations and phonon Boltzmann transport equation (PBTE), including aW-antimonene, α -arsenene, black phosphorus, α -SbAs, α -SbP and α -AsP. The κ L values decrease with the increasing of atomic mass for these materials with similar geometry and valence structures. It is ascribed to phonon branches softening, low phonon group velocity, and large Grüneisen parameters. Due to the neutralization of phonon group velocity and phonon lifetime, κ L of binary compounds is between their corresponding elements. As the atomic radius and mass increase, the bond strength and the phonon group velocity decreases. Furthermore, the dimensionless parameter γ 2 / A , which comes from the Slack equation and only has the dependence of Grüneisen parameter, grows up with the atomic mass rising, which indicates that a larger anharmonicity is present in the heavier V-V monolayers. For SbAs and SbP compounds, the thermal conductivity anisotropy mainly results from the anisotropy of elastic coefficients along armchair and zigzag directions. Our results highlight the impact of atomic arrangement on the thermal conductivity of group VA binary compounds. This work paves a way to modulate the thermal conductivity of 2D VA elements by incorporation atoms with suitable mass and may guide to improve thermoelectrical performance via the alloying method. 
    more » « less