skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 29, 2026

Title: Shapley Effects as a Global Sensitivity Metric for Robust Design and Control
ABSTRACT This paper introduces a novel robust design approach aimed at reducing the sensitivity of a target metric to parameter uncertainties. Using Shapley effects from game theory as a global sensitivity proxy, we analyze a clamped‐free Euler‐Bernoulli beam with two uncertain mass positions. The first case study reduces sensitivity of the second mode frequency to mass location uncertainty and is validated experimentally on a gantry‐suspended beam. In the second case, a robust controller minimizes the Shapley effect of residual energy on mass location uncertainty. Our approach significantly reduces average residual energy compared to traditional Zero Vibration Derivative Input Shapers, as confirmed by experiments.  more » « less
Award ID(s):
2021710
PAR ID:
10632678
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Optimal Control Applications and Methods
ISSN:
0143-2087
Subject(s) / Keyword(s):
Optimal Control
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The presence of various uncertainty sources in metal-based additive manufacturing (AM) process prevents producing AM products with consistently high quality. Using electron beam melting (EBM) of Ti-6Al-4V as an example, this paper presents a data-driven framework for process parameters optimization using physics-informed computer simulation models. The goal is to identify a robust manufacturing condition that allows us to constantly obtain equiaxed materials microstructures under uncertainty. To overcome the computational challenge in the robust design optimization under uncertainty, a two-level data-driven surrogate model is constructed based on the simulation data of a validated high-fidelity multiphysics AM simulation model. The robust design result, indicating a combination of low preheating temperature, low beam power, and intermediate scanning speed, was acquired enabling the repetitive production of equiaxed structure products as demonstrated by physics-based simulations. Global sensitivity analysis at the optimal design point indicates that among the studied six noise factors, specific heat capacity and grain growth activation energy have the largest impact on the microstructure variation. Through this exemplar process optimization, the current study also demonstrates the promising potential of the presented approach in facilitating other complicate AM process optimizations, such as robust designs in terms of porosity control or direct mechanical property control. 
    more » « less
  2. This paper introduces an algorithm for solving robust optimal controllers for nonlinear systems using the homotopy shooting method. Robustness is ensured by penalizing the sensitivity states of the models during the transition and at the final time. In two examples, the cost is represented by the tracking error and terminal residual energy for a rest-to-rest maneuver. The proposed approach is illustrated on a double mass-spring-damper system and on a Type 1 Diabetes model where the cost function includes the integral of the tracking error. Our method can be readily extended for de-sensitization of multiple states over the whole time interval. 
    more » « less
  3. The focus of this paper is on the design of input shapers for systems with uncertainties in the parameters of the vibratory modes which need to be attenuated. A probabilistic framework is proposed for the design of the robust input shaper, when the uncertain modal parameters are characterized by probability density functions. A convex chance constrained optimization problem is posed to determine the parameters of input shapers (time-delay filter) which can accommodate the users acceptable risk levels for a prescribed residual energy threshold. Robust input shapers are developed for various compact support distributions to illustrate the ability of the proposed formulation to synthesize input shapers which can satisfy a residual energy threshold with a given risk level. This problem formulation can conceivably reduce the conservative nature of worst case controllers which have to ensure that all realizations of the uncertain system have to satisfy a prescribed performance index. The chance constrained input shaper is designed for a spring-mass-dashpot system with three different distributions for the uncertain spring stiffness. Results provide encouragement for the extension of the proposed approach to multi-dimensional and multi-model uncertainties. 
    more » « less
  4. Summary Scenario‐based model predictive control (MPC) methods can mitigate the conservativeness inherent to open‐loop robust MPC. Yet, the scenarios are often generated offline based on worst‐case uncertainty descriptions obtaineda priori, which can in turn limit the improvements in the robust control performance. To this end, this paper presents a learning‐based, adaptive‐scenario‐tree model predictive control approach for uncertain nonlinear systems with time‐varying and/or hard‐to‐model dynamics. Bayesian neural networks (BNNs) are used to learn a state‐ and input‐dependent description of model uncertainty, namely the mismatch between a nominal (physics‐based or data‐driven) model of a system and its actual dynamics. We first present a new approach for training robust BNNs (RBNNs) using probabilistic Lipschitz bounds to provide a less conservative uncertainty quantification. Then, we present an approach to evaluate the credible intervals of RBNN predictions and determine the number of samples required for estimating the credible intervals given a credible level. The performance of RBNNs is evaluated with respect to that of standard BNNs and Gaussian process (GP) as a basis of comparison. The RBNN description of plant‐model mismatch with verified accurate credible intervals is employed to generate adaptive scenarios online for scenario‐based MPC (sMPC). The proposed sMPC approach with adaptive scenario tree can improve the robust control performance with respect to sMPC with a fixed, worst‐case scenario tree and with respect to an adaptive‐scenario‐based MPC (asMPC) using GP regression on a cold atmospheric plasma system. Furthermore, closed‐loop simulation results illustrate that robust model uncertainty learning via RBNNs can enhance the probability of constraint satisfaction of asMPC. 
    more » « less
  5. Abstract Addressing challenges in urban water infrastructure systems, including aging infrastructure, supply uncertainty, extreme events, and security threats, depends highly on water distribution networks modeling emphasizing the importance of realistic assumptions, modeling complexities, and scalable solutions. In this study, we propose a derivative‐free, linear approximation for solving the network water flow problem. The proposed approach takes advantage of the special form of the nonlinear head loss equations, and, after the transformation of variables and constraints, the water flow problem reduces to a linear optimization problem that can be efficiently solved by modern linear solvers. Ultimately, the proposed approach amounts to solving a series of linear optimization problems. We demonstrate the proposed approach through several case studies and show that the approach can model arbitrary network topologies and various types of valves and pumps, thus providing modeling flexibility. Under mild conditions, we show that the proposed linear approximation converges. We provide sensitivity analysis and discuss in detail the current limitations of our approach and suggest solutions to overcome these. All the codes, tested networks, and results are freely available on Github for research reproducibility. 
    more » « less