skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 16, 2026

Title: Measurements of the Emission Rates of Nitrogen Oxides and Greenhouse Gases From the Prudhoe Bay Oil Field
Abstract Oil and gas production regions are significant sources of greenhouse gases and reactive pollutants such as nitrogen oxides (NOx) and volatile organic compounds. Research has also shown that methane (CH4) emissions reported to the Environmental Protection Agency's (EPA) Greenhouse Gas Reporting Program (GHGRP) are generally underestimated. The Arctic accounted for 5.5% of global oil and gas production in 2022 but is estimated to contain significant undiscovered resources. The emitted NOxand volatile organic compounds can impact the composition and chemistry of the Arctic atmosphere. The Prudhoe Bay Oil Field in Alaska is one of the 10 largest oil fields in the US and has been approved for significant development expansion. However, only one recent study has reported measurements of its greenhouse gas emissions. We estimate the emission rates for carbon dioxide (CO2), CH4, and NOxfrom the Prudhoe Bay Oil Field during the spring of 2022 using airborne mass balance methods and emission ratios. We also discuss emissions per energy produced and show an increase over time, with values higher than the national average for oil and gas producing regions, though within uncertainties. Our estimates are lower than the NOxemission estimate reported in the National Emissions Inventory (NEI), as seen in other oil and gas studies, but fall within the uncertainty range of the greenhouse gases reported in the GHGRP. This work provides a valuable snapshot of emissions before further expansion of extraction activities.  more » « less
Award ID(s):
2000493 2000404
PAR ID:
10632942
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
130
Issue:
15
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Chemistry in the Arctic: Clouds, Halogens, and Aerosols (CHACHA) field project aimed to advance the understanding of coupled meteorological and chemical processes in the atmospheric boundary layer during the seasonal increase in sea ice fracturing in spring. CHACHA sought to understand the interactions between this changing snow-covered surface, surface-coupled clouds, sea spray aerosols, multiphase halogen chemistry, and impacts of emissions from oil and gas extraction on atmospheric chemistry. The project measured greenhouse gases, reactive gases, size-resolved aerosol number concentrations, cloud microphysical properties, and meteorological conditions in real time, while also collecting particles for offline analysis. Two instrumented aircraft were deployed: the Purdue University Airborne Laboratory for Atmospheric Research and the University of Wyoming King Air. Flights were conducted out of Utqiaġvik, Alaska, between 21 February and 16 April 2022, sampling air over snow-covered and newly frozen sea ice in the Beaufort and Chukchi Seas, over open leads, and over the snow-covered tundra of the North Slope of Alaska, including the oil and gas extraction region near Prudhoe Bay. Observations showed that reactive bromine gases generally peaked near the snow-covered surface and decayed rapidly within the lowest few hundred meters where ozone was depleted, with concentrations reduced by nitrogen oxides emitted from oil fields. Cloud microphysical measurements revealed that thin clouds over and downwind of leads grew in vertical extent after contact with open water. Results from dropsondes indicated that convective boundary layers developed over leads, with depths ranging from 250 to 850 m depending on the fetch. 
    more » « less
  2. Abstract. Accurate and comprehensive quantification of oil and gas methane emissions is pivotal in informing effective methane mitigation policies while also supporting the assessment and tracking of progress towards emissions reduction targets set by governments and industry. While national bottom-up source-level inventories are useful for understanding the sources of methane emissions, they are often unrepresentative across spatial scales, and their reliance on generic emission factors produces underestimations when compared with measurement-based inventories. Here, we compile and analyze previously reported ground-based facility-level methane emissions measurements (n=1540) in the major US oil- and gas-producing basins and develop representative methane emission profiles for key facility categories in the US oil and gas supply chain, including well sites, natural-gas compressor stations, processing plants, crude-oil refineries, and pipelines. We then integrate these emissions data with comprehensive spatial data on national oil and gas activity to estimate each facility's mean total methane emissions and uncertainties for the year 2021, from which we develop a mean estimate of annual national methane emissions resolved at 0.1° × 0.1° spatial scales (∼ 10 km × 10 km). From this measurement-based methane emissions inventory (EI-ME), we estimate total US national oil and gas methane emissions of approximately 16 Tg (95 % confidence interval of 14–18 Tg) in 2021, which is ∼ 2 times greater than the EPA Greenhouse Gas Inventory. Our estimate represents a mean gas-production-normalized methane loss rate of 2.6 %, consistent with recent satellite-based estimates. We find significant variability in both the magnitude and spatial distribution of basin-level methane emissions, ranging from production-normalized methane loss rates of < 1 % in the gas-dominant Appalachian and Haynesville regions to > 3 %–6 % in oil-dominant basins, including the Permian, Bakken, and the Uinta. Additionally, we present and compare novel comprehensive wide-area airborne remote-sensing data and results for total area methane emissions and the relative contributions of diffuse and concentrated methane point sources as quantified using MethaneAIR in 2021. The MethaneAIR assessment showed reasonable agreement with independent regional methane quantification results in sub-regions of the Permian and Uinta basins and indicated that diffuse area sources accounted for the majority of the total oil and gas emissions in these two regions. Our assessment offers key insights into plausible underlying drivers of basin-to-basin variabilities in oil and gas methane emissions, emphasizing the importance of integrating measurement-based data when developing high-resolution spatially explicit methane inventories in support of accurate methane assessment, attribution, and mitigation. The high-resolution spatially explicit EI-ME inventory is publicly available at https://doi.org/10.5281/zenodo.10734299 (Omara, 2024). 
    more » « less
  3. Abstract Collectively, reservoirs constitute a significant global source of C‐based greenhouse gases (GHGs). Yet, global estimates of reservoir carbon dioxide (CO2) and methane (CH4) emissions remain uncertain, varying more than four‐fold in recent analyses. Here we present results from a global application of the Greenhouse Gas from Reservoirs (G‐res) model wherein we estimate per‐area and per‐reservoir CO2and CH4fluxes, by specific flux pathway and in a spatially and temporally explicit manner, as a function of reservoir characteristics. We show: (a) CH4fluxes via degassing and ebullition are much larger than previously recognized and diffusive CH4fluxes are lower than previously estimated, while CO2emissions are similar to those reported in past work; (b) per‐area reservoir GHG fluxes are >29% higher than suggested by previous studies, due in large part to our novel inclusion of the degassing flux in our global estimate; (c) CO2flux is the dominant emissions pathway in boreal regions and CH4degassing and ebullition are dominant in tropical and subtropical regions, with the highest overall reservoir GHG fluxes in the tropics and subtropics; and (d) reservoir GHG fluxes are quite sensitive to input parameters that are both poorly constrained and likely to be strongly influenced by climate change in coming decades (parameters such as temperature and littoral area, where the latter may be expanded by deepening thermoclines expected to accompany warming surface waters). Together these results highlight a critical need to both better understand climate‐related drivers of GHG emission and to better quantify GHG emissions via CH4ebullition and degassing. 
    more » « less
  4. Motor vehicles are among the major sources of pollutants and greenhouse gases in urban areas and a transition to “zero emission vehicles” is underway worldwide. However, emissions associated with brake and tire wear will remain. We show here that previously unrecognized volatile and semi-volatile organic compounds, which have a similarity to biomass burning emissions are emitted during braking. These include greenhouse gases or, these classified as Hazardous Air Pollutants, as well as nitrogencontaining organics, nitrogen oxides and ammonia. The distribution and reactivity of these gaseous emissions are such that they can react in air to form ozone and other secondary pollutants with adverse health and climate consequences. Some of the compounds may prove to be unique markers of brake emissions. At higher temperatures, nucleation and growth of nanoparticles is also observed. Regions with high traffic, which are often disadvantaged communities, as well as commuters can be impacted by these emissions even after combustion-powered vehicles are phased out. 
    more » « less
  5. Abstract Agricultural activity is a significant source of greenhouse gas emissions. The fertilizer production process emits N2O, CO2, and CH4, and fertilized croplands emit N2O. We present continuous airborne observations of these trace gases in the Lower Mississippi River Basin to quantify emissions from both fertilizer plants and croplands during the early growing season. Observed hourly emission rates from two fertilizer plants are compared with reported inventory values, showing agreement for N2O and CO2emissions but large underestimation in reported CH4emissions by up to a factor of 100. These CH4emissions are consistent with loss rates of 0.6–1.2%. We quantify regional emission fluxes (100 km) of N2O using the airborne mass balance technique, a first application for N2O, and explore linkages to controlling processes. Finally, we demonstrate the ability to use airborne measurements to distinguish N2O emission differences between neighboring fields, determining we can distinguish different emission behaviors of regions on the order of 2.5 km2with emissions differences of approximately 0.026μmol m−2s−1. This suggests airborne approaches such as outlined here could be used to evaluate the impact of different agricultural practices at critical field‐size spatial scales. 
    more » « less