skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Diffuse boosted cosmic neutrino background
Energetic cosmic rays scatter off the cosmic neutrino background throughout the history of the Universe, yielding a diffuse flux of cosmic relic neutrinos boosted to high energies. We calculate this flux under different assumptions of the cosmic-ray flux spectral slope and redshift evolution. The nonobservation of the diffuse flux of boosted relic neutrinos with current high-energy neutrino experiments already excludes an average cosmic neutrino background overdensity larger than 10 4 over cosmological distances. We discuss the future detectability of the diffuse flux of boosted relic neutrinos in light of neutrino overdensity estimates and cosmogenic neutrino backgrounds.  more » « less
Award ID(s):
2209420
PAR ID:
10632991
Author(s) / Creator(s):
; ;
Publisher / Repository:
Physical Review Journals
Date Published:
Journal Name:
Physical Review D
Volume:
111
Issue:
6
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrahigh-energy neutrinos ( UHE ν s) can be used as a valuable probe of superheavy dark matter above 10 9 GeV , the latter being difficult to probe with collider and direct detection experiments due to the feebly interacting nature. Searching for radio emissions originating from the interaction of UHE ν s with the lunar regolith enables us to explore energies beyond 10 12 GeV , which astrophysical accelerators cannot achieve. Taking into account the interaction of UHE ν s with the cosmic neutrino background and resulting standard neutrino cascades to calculate the neutrino flux on Earth, for the first time, we investigate sensitivities of such lunar radio observations to very heavy dark matter. We also examine the impacts of cosmogenic neutrinos that have the astrophysical origin. We show that the proposed ultralong wavelength lunar radio telescope, as well as the existing low-frequency array, can provide the most stringent constraints on decaying or annihilating superheavy dark matter with masses at 10 12 GeV . The limits are complementary to or even stronger than those from other UHE ν detectors, such as the IceCube-Gen2 radio array and the Giant Radio Array for Neutrino Detection. 
    more » « less
  2. We present the first measurement of nuclear recoils from solar B 8 neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t × yr resulted in 37 observed events above 0.5 keV, with ( 26.4 1.3 + 1.4 ) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73 σ . The measured B 8 solar neutrino flux of ( 4.7 2.3 + 3.6 ) × 10 6 cm 2 s 1 is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CE ν NS cross section on Xe of ( 1.1 0.5 + 0.8 ) × 10 39 cm 2 is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector. Published by the American Physical Society2024 
    more » « less
  3. Abstract We revisit ultrahigh-energy cosmic-ray (UHECR) production in tidal disruption events (TDEs) in light of recent evidence of neutrino-TDE associations. We use an isotropically emitting source-propagation model, which has been developed to describe the neutrino production in AT2019dsg, AT2019fdr, and AT2019aalc. These TDEs have strong dust echoes in the infrared (IR) range, which are potentially linked to the neutrino production. A mechanism where neutrinos originate from cosmic-ray (CR) scattering on IR photons implies CRs in the ultrahigh-energy range, thus suggesting a natural connection with the observed UHECR. We extrapolate the three TDE associations to a population of neutrino- and UHECR-emitting TDEs, and postulate that these TDEs power the UHECRs. We then infer the source composition, population parameters, and local rates that are needed to describe UHECR data. We find that UHECR data point toward a mix of light to mid-heavy injection isotopes, which could be found, e.g., in oxygen-neon-magnesium white dwarfs, and to a contribution of at least two groups of TDEs with different characteristics, dominated by AT2019aalc-type events. The required local TDE rates of O ( 1 0 2 ) Gpc 3 yr 1 , however, are more indicative of the disruption of main-sequence stars. We propose an enhanced efficiency in the acceleration of heavier nuclei that could address this discrepancy. The predicted diffuse neutrino fluxes suggest a population of astrophysical neutrino sources that can be observed by future radio neutrino detection experiments. The derived source parameters are consistent with those expected from the individual neutrino observations. 
    more » « less
  4. Abstract We report on a search for electron antineutrinos ( ν ¯ e ) from astrophysical sources in the neutrino energy range 8.3–30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we find no significant excess over background model predictions. Assuming several supernova relic neutrino spectra, we give upper flux limits of 60–110 cm−2s−1(90% confidence level, CL) in the analysis range and present a model-independent flux. We also set limits on the annihilation rates for light dark matter pairs to neutrino pairs. These data improve on the upper probability limit of8B solar neutrinos converting into ν ¯ e , P ν e ν ¯ e < 3.5 × 10 5 (90% CL) assuming an undistorted ν ¯ e shape. This corresponds to a solar ν ¯ e flux of 60 cm−2s−1(90% CL) in the analysis energy range. 
    more » « less
  5. This Letter presents the measurement of the energy-dependent neutrino-nucleon cross section in tungsten and the differential flux of muon neutrinos and antineutrinos. The analysis is performed using proton-proton collision data at a center-of-mass energy of 13.6 TeV and corresponding to an integrated luminosity of ( 65.6 ± 1.4 ) fb 1 . Using the active electronic components of the FASER detector, 338.1 ± 21.0 charged current muon neutrino interaction events are identified, with backgrounds from other processes subtracted. We unfold the neutrino events into a fiducial volume corresponding to the sensitive regions of the FASER detector and interpret the results in two ways: (i) we use the expected neutrino flux to measure the cross section, and (ii) we use the predicted cross section to measure the neutrino flux. Both results are presented in six bins of neutrino energy, achieving the first differential measurement in the TeV range. The observed distributions align with standard model predictions. Using this differential data, we extract the contributions of neutrinos from pion and kaon decays. Published by the American Physical Society2025 
    more » « less