skip to main content

Search for: All records

Award ID contains: 2209420

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We present the largest low frequency (120 MHz) arcminute resolution image of the radio synchrotron background (RSB) to date, and its corresponding angular power spectrum of anisotropies (APS) with angular scales ranging from 3° to 0.3 arcmin. We show that the RSB around the north celestial pole has a significant excess anisotropy power at all scales over a model of unclustered point sources based on source counts of known source classes. This anisotropy excess, which does not seem attributable to the diffuse Galactic emission, could be linked to the surface brightness excess of the RSB. To better understand the information contained within the measured APS, we model the RSB varying the brightness distribution, size, and angular clustering of potential sources. We show that the observed APS could be produced by a population of faint clustered point sources only if the clustering is extreme and the size of the Gaussian clusters is ≲1 arcmin. We also show that the observed APS could be produced by a population of faint diffuse sources with sizes ≲1 arcmin, and this is supported by features present in our image. Both of these cases would also cause an associated surface brightness excess. These classes of sources are in a parameter space not well probed by even the deepest radio surveys to date.

    more » « less

    Relativistic jets originating from protomagnetar central engines can lead to long duration gamma-ray bursts (GRBs) and are considered potential sources of ultra-high-energy cosmic rays and secondary neutrinos. We explore the propagation of such jets through a broad range of progenitors, from stars which have shed their envelopes to supergiants which have not. We use a semi-analytical spin-down model for the strongly magnetized and rapidly rotating protoneutron star (PNS) to investigate the role of central engine properties such as the surface dipole field strength, initial rotation period, and jet opening angle on the interactions and dynamical evolution of the jet-cocoon system. With this model, we determine the properties of the relativistic jet, the mildly relativistic cocoon, and the collimation shock in terms of system parameters such as the time-dependent jet luminosity, injection angle, and density profile of the stellar medium. We also analyse the criteria for a successful jet breakout, the maximum energy that can be deposited into the cocoon by the relativistic jet, and structural stability of the magnetized outflow relative to local instabilities. Lastly, we compute the high-energy neutrino emission as these magnetized outflows burrow through their progenitors. Precursor neutrinos from successful GRB jets are unlikely to be detected by IceCube, which is consistent with the results of previous works. On the other hand, we find that high-energy neutrinos may be produced for extended progenitors like blue and red supergiants, and we estimate the detectability of neutrinos with next generation detectors such as IceCube-Gen2.

    more » « less