skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2209420

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sterile neutrinos can be produced through mixing with active neutrinos in the hot, dense core of a core-collapse supernova (SN). The standard bounds on the active-sterile mixing (sin2θ) from SN arise from SN1987A energy-loss, requiringEloss< 1052erg. In this work, we discuss a novel bound on sterile neutrino parameter space arising from the energy deposition through its decays inside the SN envelope. Using the observed underluminous SN IIP population, this energy deposition is constrained to be below ∼ 1050erg. Focusing on sterile neutrino mixing only with tau neutrino, for heavy sterile massesmsin the range 100 – 500 MeV, we find stringent constraints on sin2θτreaching two orders of magnitude lower than those from the SN1987A energy loss argument, thereby probing the mixing angles required for Type-I seesaw mechanism. Similar bounds will also be applicable to sterile mixing only with muons (sin2θμ). 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract We perform three-dimensional supernova simulations with a phenomenological treatment of neutrino flavor conversions. We show that the explosion energy can increase to as high as $$\sim 10^{51}$$ erg depending on the critical density for the onset of flavor conversions, due to a significant enhancement of the mean energy of electron antineutrinos. Our results confirm previous studies showing such energetic explosions, but for the first time in three-dimensional configurations. In addition, we predict neutrino and gravitational wave (GW) signals from a nearby supernova explosion aided by flavor conversions. We find that the neutrino event number decreases because of the reduced flux of heavy-lepton neutrinos. In order to detect GWs, next-generation GW telescopes such as Cosmic Explorer and the Einstein Telescope are needed even if the supernova event is located at the Galactic Center. These findings show that the neutrino flavor conversions can significantly change supernova dynamics and highlight the importance of further studies on the quantum kinetic equations to determine the conditions of the conversions and their asymptotic states. 
    more » « less
  3. ABSTRACT How massive stars end their lives depends on the core mass, core angular momentum, and hydrogen envelopes at death. However, these key physical facets of stellar evolution can be severely affected by binary interactions. In turn, the effectiveness of binary interactions itself varies greatly depending on the initial conditions of the binaries, making the situation much more complex. We investigate systematically how binary interactions influence core–collapse progenitors and their fates. Binary evolution simulations are performed to survey the parameter space of supernova progenitors in solar metallicity binary systems and to delineate major evolutionary paths. We first study fixed binary mass ratios ($$q=M_2/M_1$$ = 0.5, 0.7, and 0.9) to elucidate the impacts of initial mass and initial separation on the outcomes, treating separately Type Ibc supernova, Type II supernova, accretion-induced collapse (AIC), rapidly rotating supernova (Ibc-R), black hole formation, and long gamma ray burst (long GRB). We then conduct 12 binary population synthesis model calculations, varying the initial condition distributions and binary evolution parameters, to estimate various supernova fractions. We obtain a Milky Way supernova rate $$R_{\rm SN} = (1.78$$–$$2.47) \times 10^{-2} \, {\rm yr}^{-1}$$ which is consistent with observations. We find the rates of AIC, Ibc-R, and long GRB to be $$\sim 1/100$$ the rate of regular supernovae. Our estimated long GRB rates are higher than the observed long GRB rate and close to the low luminosity GRB rate, although care must be taken considering our models are computed with solar metallicity. Furthering binary modelling and improving the inputs one by one will enable more detailed studies of these and other transients associated with massive stars. 
    more » « less
  4. ABSTRACT The gamma-ray Fermi-LAT Galactic Centre excess (GCE) has puzzled scientists for over 15 yr. Despite ongoing debates about its properties, and especially its spatial distribution, its nature remains elusive. We scrutinize how the estimated spatial morphology of this excess depends on models for the Galactic diffuse emission, focusing particularly on the extent to which the Galactic plane and point sources are masked. Our main aim is to compare a spherically symmetric morphology – potentially arising from the annihilation of dark matter (DM) particles – with a boxy morphology – expected if faint unresolved sources in the Galactic bulge dominate the excess emission. Recent claims favouring a DM-motivated template for the GCE are shown to rely on a specific Galactic bulge template, which performs worse than other templates for the Galactic bulge. We find that a non-parametric model of the Galactic bulge derived from the VISTA Variables in the Via Lactea survey results in a significantly better fit for the GCE than DM-motivated templates. This result is independent of whether a galprop-based model or a more non-parametric ring-based model is used to describe the diffuse Galactic emission. This conclusion remains true even when additional freedom is added in the background models, allowing for non-parametric modulation of the model components and substantially improving the fit quality. When adopted, optimized background models provide robust results in terms of preference for a boxy bulge morphology for the GCE, regardless of the mask applied to the Galactic plane. 
    more » « less
  5. ABSTRACT The origin of the radio synchrotron background (RSB) is currently unknown. Its understanding might have profound implications in fundamental physics or might reveal a new class of radio emitters. In this work, we consider the scenario in which the RSB is due to extragalactic radio sources and measure the angular cross-correlation of Low-Frequency Array (LOFAR) images of the diffuse radio sky with matter tracers at different redshifts, provided by galaxy catalogues and cosmic microwave background lensing. We compare these measured cross-correlations to those expected for models of RSB sources. We find that low-redshift populations of discrete sources are excluded by the data, while higher redshift explanations are compatible with available observations. We also conclude that at least 20 per cent of the RSB surface brightness level must originate from populations tracing the large-scale distribution of matter in the Universe, indicating that at least this fraction of the RSB is of extragalactic origin. Future measurements of the correlation between the RSB and tracers of high-redshift sources will be crucial to constraining the source population of the RSB. 
    more » « less
  6. ABSTRACT We compile a catalogue of 578 highly probable and 62 likely red supergiants (RSGs) of the Milky Way, which represents the largest list of Galactic RSG candidates designed for continuous follow-up efforts to date. We match distances measured by Gaia DR3, 2MASS photometry, and a 3D Galactic dust map to obtain luminous bright late-type stars. Determining the stars’ bolometric luminosities and effective temperatures, we compare to Geneva stellar evolution tracks to determine likely RSG candidates, and quantify contamination using a catalogue of Galactic AGB in the same luminosity-temperature space. We add details for common or interesting characteristics of RSG, such as multistar system membership, variability, and classification as a runaway. As potential future core-collapse supernova progenitors, we study the ability of the catalogue to inform the Supernova Early Warning System (SNEWS) coincidence network made to automate pointing, and show that for 3D position estimates made possible by neutrinos, the number of progenitor candidates can be significantly reduced, improving our ability to observe the progenitor pre-explosion and the early phases of core-collapse supernovae. 
    more » « less
  7. ABSTRACT We perform a comparative analysis of nucleosynthesis yields from binary neutron star (BNS) mergers, black hole-neutron star (BHNS) mergers, and core-collapse supernovae (CCSNe) with the goal of determining which are the most dominant sources of r-process enrichment observed in stars. We find that BNS and BHNS binaries may eject similar mass distributions of robust r-process nuclei post-merger (up to third peak and actinides, A ∼ 200−240), after accounting for the volumetric event rates. Magnetorotational (MR) CCSNe likely undergo a weak r-process (up to A ∼ 140) and contribute to the production of light element primary process (LEPP) nuclei, whereas typical thermal, neutrino-driven CCSNe only synthesize up to first r-process peak nuclei (A ∼ 80−90). We also find that the upper limit to the rate of MR CCSNe is $$\lesssim 1~{{\ \rm per\ cent}}$$ the rate of typical thermal CCSNe; if the rate was higher, then weak r-process nuclei would be overproduced. Although the largest uncertainty is from the volumetric event rate, the prospects are encouraging for confirming these rates in the next few years with upcoming surveys. Using a simple model to estimate the resulting kilonova light curve from mergers and our set of fiducial merger parameters, we predict that ∼7 BNS and ∼2 BHNS events will be detectable per year by the Vera C. Rubin Observatory (LSST), with prior gravitational wave (GW) triggers. 
    more » « less
  8. ABSTRACT We present the largest low frequency (120 MHz) arcminute resolution image of the radio synchrotron background (RSB) to date, and its corresponding angular power spectrum of anisotropies (APS) with angular scales ranging from 3° to 0.3 arcmin. We show that the RSB around the north celestial pole has a significant excess anisotropy power at all scales over a model of unclustered point sources based on source counts of known source classes. This anisotropy excess, which does not seem attributable to the diffuse Galactic emission, could be linked to the surface brightness excess of the RSB. To better understand the information contained within the measured APS, we model the RSB varying the brightness distribution, size, and angular clustering of potential sources. We show that the observed APS could be produced by a population of faint clustered point sources only if the clustering is extreme and the size of the Gaussian clusters is ≲1 arcmin. We also show that the observed APS could be produced by a population of faint diffuse sources with sizes ≲1 arcmin, and this is supported by features present in our image. Both of these cases would also cause an associated surface brightness excess. These classes of sources are in a parameter space not well probed by even the deepest radio surveys to date. 
    more » « less
  9. ABSTRACT Relativistic jets originating from protomagnetar central engines can lead to long duration gamma-ray bursts (GRBs) and are considered potential sources of ultra-high-energy cosmic rays and secondary neutrinos. We explore the propagation of such jets through a broad range of progenitors, from stars which have shed their envelopes to supergiants which have not. We use a semi-analytical spin-down model for the strongly magnetized and rapidly rotating protoneutron star (PNS) to investigate the role of central engine properties such as the surface dipole field strength, initial rotation period, and jet opening angle on the interactions and dynamical evolution of the jet-cocoon system. With this model, we determine the properties of the relativistic jet, the mildly relativistic cocoon, and the collimation shock in terms of system parameters such as the time-dependent jet luminosity, injection angle, and density profile of the stellar medium. We also analyse the criteria for a successful jet breakout, the maximum energy that can be deposited into the cocoon by the relativistic jet, and structural stability of the magnetized outflow relative to local instabilities. Lastly, we compute the high-energy neutrino emission as these magnetized outflows burrow through their progenitors. Precursor neutrinos from successful GRB jets are unlikely to be detected by IceCube, which is consistent with the results of previous works. On the other hand, we find that high-energy neutrinos may be produced for extended progenitors like blue and red supergiants, and we estimate the detectability of neutrinos with next generation detectors such as IceCube-Gen2. 
    more » « less