SUMMARY Elastodynamic Green’s functions are an essential ingredient in seismology as they form the connection between direct observations of seismic waves and the earthquake source. They are also fundamental to various seismological techniques including physics-based ground motion prediction and kinematic or dynamic source inversions. In regions with established 3-D models of the Earth’s elastic structure, such as southern California, 3-D Green’s functions can be computed using numerical simulations of seismic wave propagation. However, such simulations are computationally expensive, which poses challenges for real-time ground motion prediction and uncertainty quantification in source inversions. In this study, we address these challenges by using a reduced-order model (ROM) approach that enables the rapid evaluation of approximate Green’s functions. The ROM technique developed approximates three-component time-dependent surface velocity wavefields obtained from numerical simulations of seismic wave propagation. We apply our ROM approach to a 50 km $$\times$$ 40 km area in greater Los Angeles accounting for topography, site effects, 3-D subsurface velocity structure, and viscoelastic attenuation. The ROM constructed for this region enables rapid computation ($$\approx 0.0001$$ CPU hr) of complete, high-resolution (500 m spacing), 0.5 Hz surface velocity wavefields that are accurate for a shortest wavelength of 1.0 km for a single elementary moment tensor source. Using leave-one-out cross validation, we measure the accuracy of our Green’s functions for the CVM-S velocity model in both the time domain and frequency domain. Averaged across all sources, receivers, and time steps, the error in the rapid seismograms is less than 0.01 cm s−1. We demonstrate that the ROM can accurately and rapidly reproduce simulated seismograms for generalized moment tensor sources in our region, as well as kinematic sources by using a finite fault model of the 1987 $$M_\mathrm{ W}$$ 5.9 Whittier Narrows earthquake as an example. We envision that rapid, accurate Green’s functions from reduced-order modelling for complex 3-D seismic wave propagation simulations will be useful for constructing real-time ground motion synthetics and source inversions with high spatial resolution.
more »
« less
This content will become publicly available on December 20, 2025
A direct reconstruction method for radiating sources in Maxwell’s equations with single-frequency data
Abstract This paper presents a fast and robust numerical method for reconstructing point-like sources in the time-harmonic Maxwell’s equations given Cauchy data at a fixed frequency. This is an electromagnetic inverse source problem with broad applications, such as antenna synthesis and design, medical imaging, and pollution source tracing. We introduce new imaging functions and a computational algorithm to determine the number of point sources, their locations, and associated moment vectors, even when these vectors have notably different magnitudes. The number of sources and locations are estimated using significant peaks of the imaging functions, and the moment vectors are computed via explicitly simple formulas. The theoretical analysis and stability of the imaging functions are investigated, where the main challenge lies in analyzing the behavior of the dot products between the columns of the imaginary part of the Green’s tensor and the unknown moment vectors. Additionally, we extend our method to reconstruct small-volume sources using an asymptotic expansion of their radiated electric field. We provide numerical examples in three dimensions to demonstrate the performance of our method.
more »
« less
- Award ID(s):
- 2208293
- PAR ID:
- 10633196
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Inverse Problems
- Volume:
- 41
- Issue:
- 1
- ISSN:
- 0266-5611
- Page Range / eLocation ID:
- 015003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The analysis of individual X-ray sources that appear in a crowded field can easily be compromised by the misallocation of recorded events to their originating sources. Even with a small number of sources, which none the less have overlapping point spread functions, the allocation of events to sources is a complex task that is subject to uncertainty. We develop a Bayesian method designed to sift high-energy photon events from multiple sources with overlapping point spread functions, leveraging the differences in their spatial, spectral, and temporal signatures. The method probabilistically assigns each event to a given source. Such a disentanglement allows more detailed spectral or temporal analysis to focus on the individual component in isolation, free of contamination from other sources or the background. We are also able to compute source parameters of interest like their locations, relative brightness, and background contamination, while accounting for the uncertainty in event assignments. Simulation studies that include event arrival time information demonstrate that the temporal component improves event disambiguation beyond using only spatial and spectral information. The proposed methods correctly allocate up to 65$${{\ \rm per\ cent}}$$ more events than the corresponding algorithms that ignore event arrival time information. We apply our methods to two stellar X-ray binaries, UV Cet and HBC 515 A, observed with Chandra. We demonstrate that our methods are capable of removing the contamination due to a strong flare on UV Cet B in its companion ≈40× weaker during that event, and that evidence for spectral variability at times-scales of a few ks can be determined in HBC 515 Aa and HBC 515 Ab.more » « less
-
In this paper, we have used the angular spectrum propagation method and numerical simulations of a single random phase encoding (SRPE) based lensless imaging system, with the goal of quantifying the spatial resolution of the system and assessing its dependence on the physical parameters of the system. Our compact SRPE imaging system consists of a laser diode that illuminates a sample placed on a microscope glass slide, a diffuser that spatially modulates the optical field transmitting through the input object, and an image sensor that captures the intensity of the modulated field. We have considered two-point source apertures as the input object and analyzed the propagated optical field captured by the image sensor. The captured output intensity patterns acquired at each lateral separation between the input point sources were analyzed using a correlation between the captured output pattern for the overlapping point-sources, and the captured output intensity for the separated point sources. The lateral resolution of the system was calculated by finding the lateral separation values of the point sources for which the correlation falls below a threshold value of 35% which is a value chosen in accordance with the Abbe diffraction limit of an equivalent lens-based system. A direct comparison between the SRPE lensless imaging system and an equivalent lens-based imaging system with similar system parameters shows that despite being lensless, the performance of the SRPE system does not suffer as compared to lens-based imaging systems in terms of lateral resolution. We have also investigated how this resolution is affected as the parameters of the lensless imaging system are varied. The results show that SRPE lensless imaging system shows robustness to object to diffuser-to-sensor distance, pixel size of the image sensor, and the number of pixels of the image sensor. To the best of our knowledge, this is the first work to investigate a lensless imaging system’s lateral resolution, robustness to multiple physical parameters of the system, and comparison to lens-based imaging systems.more » « less
-
Abstract BackgroundDue to intrinsic differences in data formatting, data structure, and underlying semantic information, the integration of imaging data with clinical data can be non‐trivial. Optimal integration requires robust data fusion, that is, the process of integrating multiple data sources to produce more useful information than captured by individual data sources. Here, we introduce the concept offusion qualityfor deep learning problems involving imaging and clinical data. We first provide a general theoretical framework and numerical validation of our technique. To demonstrate real‐world applicability, we then apply our technique to optimize the fusion of CT imaging and hepatic blood markers to estimate portal venous hypertension, which is linked to prognosis in patients with cirrhosis of the liver. PurposeTo develop a measurement method of optimal data fusion quality deep learning problems utilizing both imaging data and clinical data. MethodsOur approach is based on modeling the fully connected layer (FCL) of a convolutional neural network (CNN) as a potential function, whose distribution takes the form of the classical Gibbs measure. The features of the FCL are then modeled as random variables governed by state functions, which are interpreted as the different data sources to be fused. The probability density of each source, relative to the probability density of the FCL, represents a quantitative measure of source‐bias. To minimize this source‐bias and optimize CNN performance, we implement a vector‐growing encoding scheme called positional encoding, where low‐dimensional clinical data are transcribed into a rich feature space that complements high‐dimensional imaging features. We first provide a numerical validation of our approach based on simulated Gaussian processes. We then applied our approach to patient data, where we optimized the fusion of CT images with blood markers to predict portal venous hypertension in patients with cirrhosis of the liver. This patient study was based on a modified ResNet‐152 model that incorporates both images and blood markers as input. These two data sources were processed in parallel, fused into a single FCL, and optimized based on our fusion quality framework. ResultsNumerical validation of our approach confirmed that the probability density function of a fused feature space converges to a source‐specific probability density function when source data are improperly fused. Our numerical results demonstrate that this phenomenon can be quantified as a measure of fusion quality. On patient data, the fused model consisting of both imaging data and positionally encoded blood markers at the theoretically optimal fusion quality metric achieved an AUC of 0.74 and an accuracy of 0.71. This model was statistically better than the imaging‐only model (AUC = 0.60; accuracy = 0.62), the blood marker‐only model (AUC = 0.58; accuracy = 0.60), and a variety of purposely sub‐optimized fusion models (AUC = 0.61–0.70; accuracy = 0.58–0.69). ConclusionsWe introduced the concept of data fusion quality for multi‐source deep learning problems involving both imaging and clinical data. We provided a theoretical framework, numerical validation, and real‐world application in abdominal radiology. Our data suggests that CT imaging and hepatic blood markers provide complementary diagnostic information when appropriately fused.more » « less
-
null (Ed.)Infrasound data are routinely used to detect and locate volcanic and other explosions, using both arrays and single sensor networks. However, at local distances (<15 km) topography often complicates acoustic propagation, resulting in inaccurate acoustic travel times leading to biased source locations when assuming straight-line propagation. Here we present a new method, termed Reverse Time Migration-Finite-Difference Time Domain (RTM-FDTD), that integrates numerical modeling into the standard RTM back-projection process. Travel time information is computed across the entire potential source grid via FDTD modeling to incorporate the effects of topography. The waveforms are then back-projected and stacked at each grid point, with the stack maximum corresponding to the likely source. We apply our method to three volcanoes with different network configurations, source-receiver distances, and topography. At Yasur Volcano, Vanuatu, RTM-FDTD locates explosions within ∼20 m of the source and differentiates between multiple vents. RTM-FDTD produces a more accurate location for the two Yasur subcraters than standard RTM and doubles the number of detected events. At Sakurajima Volcano, Japan, RTM-FDTD locates the source within 50 m of the active vent despite notable topographic blocking. The RTM-FDTD location is similar to that from the Time Reversal Mirror method, but is more computationally efficient. Lastly, at Shishaldin Volcano, Alaska, RTM and RTM-FDTD both produce realistic source locations (<50 m) for ground-coupled airwaves recorded on a four-station seismic network. We show that RTM is an effective method to detect and locate infrasonic sources across a variety of scenarios, and by integrating numerical modeling, RTM-FDTD produces more accurate source locations and increases the detection capability.more » « less
An official website of the United States government
