We describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and a locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contraction strategies, we present benchmark fermionic projected entangled pair state simulations of finite Hubbard models defined on the three-dimensional diamond lattice and random regular graphs. Published by the American Physical Society2025 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Supersymmetry on the lattice: Geometry, topology, and flat bands
                        
                    
    
            In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons, and fermions defined by local rules. Here we apply it to find connections between bosonic and fermionic lattice models in the realm of condensed-matter physics and uncover a novel fivefold way topology it demands in these systems. At the single-particle level, our connections pair a bosonic and fermionic lattice model, either describing the hopping of number-conserving particles or local couplings between fermion parity-conserving particles. The pair are isospectral except for zero modes, such as flat bands, quadratic band touchings, and nexus points, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences. Notably, in this framework, the supercharge operator that generates SUSY is Hermitian and can itself be interpreted as a hopping Hamiltonian on a bipartite lattice, a feature that enables the discovery of materials or model lattices hosting the SUSY partners. To illustrate the power of SUSY, we present 16 use cases of SUSY, that span topics including frustrated magnets, Kitaev spin liquids, and topological superconductors, the majority of which turn out to provide insights into the discovery and design of flat bands and topological materials. Published by the American Physical Society2024 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1940243
- PAR ID:
- 10633199
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We investigate the quantum many-body dynamics of bosonic atoms hopping in a two-leg ladder with strong on-site contact interactions. We observe that when the atoms are prepared in a staggered pattern with pairs of atoms on every other rung, singlon defects, i.e., rungs with only one atom, can localize due to an emergent topological model, even though the underlying model in the absence of interactions admits only topologically trivial states. This emergent topological localization results from the formation of a zero-energy edge mode in an effective lattice formed by two adjacent chains with alternating strong and weak hoping links (Su-Schrieffer-Heeger chains) and opposite staggering which interface at the defect position. Our findings open the opportunity to dynamically generate nontrivial topological behaviors without the need for complex Hamiltonian engineering. Published by the American Physical Society2025more » « less
- 
            [This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] We discuss how research on student difficulties was used as a guide to develop, validate, and evaluate a Quantum Interactive Learning Tutorial (QuILT) to help students learn how to determine the completely symmetric bosonic or completely antisymmetric fermionic wave function and be able to compare and contrast them from the case when the particles can be treated as distinguishable. We discuss how explicit scaffolding is designed via guided teaching-learning sequences for two- or three-particle bosonic and fermionic systems to help students develop intuition about how to construct completely symmetric and antisymmetric wave function, both when spin part of the wave function is ignored and when both spatial and spin degrees of freedom are included. Published by the American Physical Society2025more » « less
- 
            In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons and fermions. Here we show how this fundamental concept can be applied to connect bosonic and fermionic lattice models in the realm of condensed matter physics, e.g., to identify a variety of (bosonic) phonon and magnon lattice models which admit topologically nontrivial free fermion models as superpartners. At the single-particle level, the bosonic and the fermionic models that are generated by the SUSY are isospectral except for zero modes, such as flat bands, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences and discuss further ramifications such as the definition of supersymmetric topological invariants for generic bosonic systems. Notably, a Hermitian form of the supercharge operator, the generator of the SUSY, can itself be interpreted as a hopping Hamiltonian on a bipartite lattice. This allows us to identify a wide class of interconnected lattices whose tight-binding Hamiltonians are superpartners of one another or can be derived via squaring or square-rooting their energy spectra all the while preserving band topology features. We introduce a five-fold way symmetry classification scheme of these SUSY lattice correspondences, including cases with a non-zero Witten index, based on a topological classification of the underlying Hermitian supercharge operator. These concepts are illustrated for various explicit examples including frustrated magnets, Kitaev spin liquids, and topological superconductors.more » « less
- 
            We introduce the concept of “quantum geometric nesting” (QGN) to characterize the idealized ordering tendencies of certain flat-band systems implicit in the geometric structure of the flat-band subspace. Perfect QGN implies the existence of an infinite class of local interactions that can be explicitly constructed and give rise to solvable ground states with various forms of possible fermion bilinear order, including flavor ferromagnetism, density waves, and superconductivity. For the ideal Hamiltonians constructed in this way, we show that certain aspects of the low-energy spectrum can also be exactly computed including, in the superconducting case, the phase stiffness. Examples of perfect QGN include flat bands with certain symmetries (e.g., chiral or time reversal) and non-symmetry-related cases exemplified with an engineered model for pair-density wave. Extending this approach, we obtain exact superconducting ground states with nontrivial pairing symmetry. Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
