skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1940243

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons, and fermions defined by local rules. Here we apply it to find connections between bosonic and fermionic lattice models in the realm of condensed-matter physics and uncover a novel fivefold way topology it demands in these systems. At the single-particle level, our connections pair a bosonic and fermionic lattice model, either describing the hopping of number-conserving particles or local couplings between fermion parity-conserving particles. The pair are isospectral except for zero modes, such as flat bands, quadratic band touchings, and nexus points, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences. Notably, in this framework, the supercharge operator that generates SUSY is Hermitian and can itself be interpreted as a hopping Hamiltonian on a bipartite lattice, a feature that enables the discovery of materials or model lattices hosting the SUSY partners. To illustrate the power of SUSY, we present 16 use cases of SUSY, that span topics including frustrated magnets, Kitaev spin liquids, and topological superconductors, the majority of which turn out to provide insights into the discovery and design of flat bands and topological materials. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons and fermions. Here we show how this fundamental concept can be applied to connect bosonic and fermionic lattice models in the realm of condensed matter physics, e.g., to identify a variety of (bosonic) phonon and magnon lattice models which admit topologically nontrivial free fermion models as superpartners. At the single-particle level, the bosonic and the fermionic models that are generated by the SUSY are isospectral except for zero modes, such as flat bands, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences and discuss further ramifications such as the definition of supersymmetric topological invariants for generic bosonic systems. Notably, a Hermitian form of the supercharge operator, the generator of the SUSY, can itself be interpreted as a hopping Hamiltonian on a bipartite lattice. This allows us to identify a wide class of interconnected lattices whose tight-binding Hamiltonians are superpartners of one another or can be derived via squaring or square-rooting their energy spectra all the while preserving band topology features. We introduce a five-fold way symmetry classification scheme of these SUSY lattice correspondences, including cases with a non-zero Witten index, based on a topological classification of the underlying Hermitian supercharge operator. These concepts are illustrated for various explicit examples including frustrated magnets, Kitaev spin liquids, and topological superconductors. 
    more » « less
  3. Data set consists of 50,000 different configurations for the Metal Organic Framework (MOF) FIGXAU. Was generated by randomly modifying the positions of the atoms and doing an SCF relaxation on each configuration.</p> 
    more » « less
  4. Metal-organic frameworks (MOFs) are nanoporous compounds composed of metal ions and organic linkers. MOFs play an important role in industrial applications such as gas separation, gas purification, and electrolytic catalysis. Important MOF properties such a potential energy are currently computed via techniques such as density functional theory (DFT). Although DFT provides accurate results, it is computationally costly. We propose a machine learning approach for estimating the potential energy of candidate MOFs, decomposing it into separate pair-wise atomic interactions using a graph neural network. Such a technique will allow high-throughput screening of candidates MOFs. We also generate a database of 50,000 spatial configurations and high quality potential energy values using DFT. 
    more » « less