skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 9, 2026

Title: Overcoming barriers and uncertainties to investing in forested watershed restoration in California
Introduction: Large-scale investments in restoring California’s forested watersheds are imperative for conserving biodiversity, enhancing water quality, and mitigating the future impacts of climate change. This study explores the underlying incentives, major challenges, and potential strategies associated with such investments. Methods: An online survey was administered to 43 experts in the field to gather their insights on forest watershed restoration investments. The collected responses were then analyzed using a combination of confirmatory factor analysis and regression analysis to elucidate patterns and relationships. Results: The analysis revealed that key environmental outcomes, such as reducing wildfire risks and protecting water supplies, are the principal motivators driving investment. At the same time, significant barriers emerged, including high costs, limited workforce capacity, and insufficient trust among stakeholders. The study also identified a series of effective strategies to overcome these obstacles, such as repositioning forest restoration as an infrastructure investment and clearly demonstrating its ecological, social, and economic benefits. Discussion: Overall, the findings underscore the need for more flexible funding frameworks, enhanced stakeholder engagement, and improved data infrastructures. By addressing these elements, policymakers and practitioners can pave the way for more resilient and sustainable forested-watershed ecosystems in California.  more » « less
Award ID(s):
2531351
PAR ID:
10633275
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Fronters in Global
Date Published:
Journal Name:
Frontiers in Forests and Global Change
Volume:
8
ISSN:
2624-893X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Global climate models project that New Mexico's Upper Rio Grande watershed is expected to become more arid and experience greater climatic and hydrological extremes in the next 50 years. The resulting transitions will have dramatic implications for downstream water users. The Upper Rio Grande and its tributaries provide water to about half of New Mexico's population, including the downstream communities of Albuquerque and Santa Fe, and surrounding agricultural areas. In the absence of formal climate adaptation strategies, informal governance arrangements are emerging to facilitate watershed climate adaptation strategies, including fuel treatments and stream remediation. One example is the Rio Grande Water Fund (RGWF), a collaborative effort coordinating work to protect storage, delivery, and quality of Rio Grande water through landscape-scale forest restoration treatments in tributary forested watersheds. This article examines the RGWF as one example of an emerging adaptation strategy that is working within—and beyond—existing legal and policy frameworks to accomplish more collaborative efforts across jurisdictional lines and administrative barriers. We identified ten (10) key characteristics of adaptive governance from the relevant literature and then applied them to the RGWF's experience in the watershed to date. Key findings include: (1) the RGWF's approach as a collaborative network created the right level of formality while also keeping flexibility in its design, (2) a scalar fit to the environmental challenge built social capital and investment in its work, (3) leadership from key stakeholders leveraged opportunities in the watershed to create and maintain stability, and (4) use of adaptive management and peer review processes built capacity by creating the feedback loops necessary to inform future work. 
    more » « less
  2. Earthquakes cause outages of power transmission system components due to direct physical damage and also through the initiation of cascading processes. This article explores what are the optimal capacity investments to increase the resilience of electric power transmission systems to earthquakes and how those investments change with respect to two issues: (1) the impact of including cascades in the investment optimization model and (2) the impact of focusing more heavily on the early stages of the outages after the earthquake in contrast to more evenly focusing on outages across the entire restoration process. A cascading outage model driven by the statistics of sample utility data is developed and used to locate the cascading lines. We compare the investment plans with and without the modeling of the cascades and with different levels of importance attached to outages that occur during different periods of the restoration process. Using a case study of the Eastern Interconnect transmission grid, where the seismic hazard stems mostly from the New Madrid Seismic Zone, we find that the cascades have little effect on the optimal set of capacity enhancement investments. However, the cascades do have a significant impact on the early stages of the restoration process. Also, the cascading lines can be far away from the initial physically damaged lines. More broadly, the early stages of the earthquake restoration process is affected by the extent of the cascading outages and is critical for search and rescue as well as restoring vital services. Also, we show that an investment plan focusing more heavily on outages in the first 3 days after the earthquake yields fewer outages in the first month, but more outages later in comparison with an investment plan focusing uniformly on outages over an entire 6-month restoration process. 
    more » « less
  3. Abstract Forest thinning and prescribed fire are expected to improve the climate resilience and water security of forests in the western U.S., but few studies have directly modeled the hydrological effects of multi‐decadal landscape‐scale forest disturbance. By updating a distributed process‐based hydrological model (DHSVM) with vegetation maps from a distributed forest ecosystem model (LANDIS‐II), we simulate the water resource impacts of forest management scenarios targeting partial or full restoration of the pre‐colonial disturbance return interval in the central Sierra Nevada mountains. In a fully restored disturbance regime that includes fire, thinning, and insect mortality, reservoir inflow increases by 4%–9% total and 8%–14% in dry years. At sub‐watershed scales (10–100 km2), thinning dense forests can increase streamflow by >20% in dry years. In a thinner forest, increased understory transpiration compensates for decreased overstory transpiration. Consequentially, 73% of streamflow gains are attributable to decreased overstory rain and snow interception loss. Thinner forests can increase headwater peak flows, but reservoir‐scale peak flows are almost exclusively influenced by climate. Uncertainty in future precipitation causes high uncertainty in future water yield, but the additional water yield attributable to forest disturbance is about five times less sensitive to annual precipitation uncertainty. This partial decoupling of the streamflow disturbance response from annual precipitation makes disturbance especially valuable for water supply during dry years. Our study can increase confidence in the water resource benefits of restoring historic forest disturbance frequencies in the central Sierra Nevada mountains, and our modeling framework is widely applicable to other forested mountain landscapes. 
    more » « less
  4. Long-term monitoring of riparian water tables and groundwater chemistry began in 2000 along four first or second order steams in and around the Gwynns Falls watershed in Baltimore City and County, MD. One site (Oregon Ridge) is in the completely forested Pond Branch catchment that serves as a ""reference"" study area for the Baltimore LTER (BES). Two sites (Glyndon, Gwynbrook) were in suburban areas of the watershed; one just upstream from the Glyndon BES long-term stream monitoring site in the headwaters of the Gwynns Falls, and one along a tributary that enters the Gwynns Falls just above the Gwynnbrook BES long-term stream monitoring site farther downstream. The final, urban site (Cahill) was along a tributary to the Gwynns Falls in Leakin Park in the urban core of the watershed. Water table data and more detailed descriptions of soils, vegetation, stream channel properties and microbial processes at these sites can be found in Groffman et al. (2002, Environmental Science and Technology 36:4547-4552) and Gift et al. (2010, Restoration Ecology 18:113-120). 
    more » « less
  5. Abstract Despite much interest in relationships among carbon and water in forests, few studies assess how carbon accumulation scales with water use in forested watersheds with varied histories. This study quantified tree growth, water use efficiency, and carbon‐water tradeoffs of young versus mature/old‐growth forest in three small (13–22 ha) watersheds in the H.J. Andrews Experimental Forest, Oregon, USA. To quantify and scale carbon‐water tradeoffs from trees to watersheds, tree‐ring records and greenness and wetness indices from remote sensing were combined with long‐term vegetation, climate, and streamflow data from young forest watersheds (trees ∼45 years of age) and from a mature/old‐growth forest watershed (trees 150–500 years of age). Biomass production was closely related to water use; water use efficiency (basal area increment per unit of evapotranspiration) was lower; and carbon‐water tradeoffs were steeper in young forest plantations compared with old‐growth forest for which the tree growth record begins in the 1850s. Greenness and wetness indices from Landsat imagery were not significant predictors of streamflow or tree growth over the period 1984 to 2017, and soil C and N did not differ significantly among watersheds. Multiple lines of evidence show that mature and old‐growth forest watersheds store and accumulate more carbon, are more drought resistant, and better sustain water availability compared to young forests. These results provide a basis for reconstructions and predictions that are potentially broadly applicable, because first‐order watersheds occupy 80%–90% of large river basins and study watersheds are representative of forest history in the Pacific Northwest region. 
    more » « less