skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Fluid-mediated deformation leads to weakening, strengthening, and block-in-matrix structures during prograde subduction mélange formation
Mélange (or block-in-matrix structures) exerts a first-order control on both the mechanical and chemical evolution of subduction megathrusts. However, the timing and mechanisms that form mélanges are variable and debated. Field observations and (micro-) structural analyses from a metasedimentary mélange in the lawsonite blueschist unit of the Catalina Schist (Santa Catalina Island, California, USA) reveal that syn-subduction deformation and fluid-mediated processes led to mélange formation at the plate interface. Deposited as turbidites, early shear occurred parallel to bedding planes (S1 foliation). At near peak subduction conditions, at the base of the subduction seismogenic zone (∼1.0 GPa, 320 °C), the rocks were intensely deformed in recumbent open to tight folds (F2) with axial planar cleavages (S2). Fracturing, fluid flow, and quartz precipitation are preserved as extensional vein mesh networks in fold noses. Continued shearing led to boudinage of these strengthened noses and transformation into strong blocks within the weaker less-veined matrix composed of high-strain fold limbs (S1−2). Microstructures reveal viscous deformation in the high-strain fold limbs occurred by pressure-solution creep of fine-grained quartz ± albite. In contrast, the fold noses and/or blocks contain coarse-grained quartz veins with little evidence of deformation. These rocks record the development of syn-subduction block-in-matrix mélange structures through the interaction of deformation and mineral precipitation; pressure solution weakened fold limbs-turned-matrix and veining strengthened fold noses-turned-blocks. Although mélange structure is often invoked to explain tremor and slow slip, rheological analysis indicates that these metasedimentary rocks can host tectonic creeping but cannot accommodate slow-slip strain rates by the deformation mechanisms preserved in their microstructures.  more » « less
Award ID(s):
2348583 2217811
PAR ID:
10633312
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geology
ISSN:
0091-7613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Episodic tremor and slow slip (ETS) downdip of the subduction seismogenic zone are poorly understood slip behaviors of the seismic cycle. Talc, a common metasomatic mineral at the subduction interface, is suggested to host slow slip but this hypothesis has not been tested in the rock record. We investigate actinolite microstructures from talc‐bearing and talc‐free rocks exhumed from the depths of modern ETS (Pimu'nga/Santa Catalina Island, California). Actinolite deformed by dissolution‐reprecipitation creep in the talc‐free rock and dislocation creep ± cataclasis in the talc‐bearing rock. This contrast results from stress amplification in the talc‐bearing rock produced by high strain rates in surrounding weak talc. We hypothesize that higher strain rates in the talc‐bearing sample represent episodic slow slip, while lower strain rates in the talc‐free sample represent intervening aseismic creep. This work highlights the need to consider fluid‐mediated chemical change in studies of subduction zone deformation and seismicity. 
    more » « less
  2. Abstract Talc-rich metasomatic rocks in subduction interface shear zones profoundly influence seismicity and arc magmatism, but their petrogenesis remains controversial. Magnesium isotope compositions of exhumed subduction interface rocks from the Catalina Schist (California, USA) record Mg exchange from ultramafic to crustal rocks. Preferential loss of isotopically light Mg from serpentinite produces isotopically heavy talc-rich metasomatic rocks. Addition of this isotopically light Mg to adjacent metasedimentary and metamafic rocks from the slab produces actinolite- and chlorite-rich metasomatic rocks, respectively, with convergent δ26Mg values relative to their protoliths. The addition of Ca to ultramafic- and metasedimentary-derived metasomatic rocks reflects a separate contribution from infiltrating metabasalt-derived fluids. Talc-rich rocks are formed by passive enrichment of Si in serpentinite during Mg loss to adjacent Mg sinks. These results and a global compilation of exhumed paleosubduction terranes suggest that talc is a common component of the subduction interface and often forms independent of Si metasomatism. Talc is likely prevalent along the interface from mantle wedge corner to subarc wherever ultramafic material is in contact with a Mg sink and where it could influence slow slip events, subduction interface rheology, and arc magmatism in modern subduction zones. 
    more » « less
  3. The northern part of the Hikurangi margin (HM) regularly experiences shallow slow-slip events (SSEs), possibly extending into the thrust faults of the sedimentary prism. For example, offshore Gisborne SSEs occur every 1-2 years and can last several weeks, during which 5-30 cm of slip may be accommodated. Understanding what controls the timing of such events will help the comprehension of HM deformation and earthquake mechanics in general. One hypothesis for a slow slip mechanism is that the low permeability of the HM prism rocks and the large fluid volumes dragged deep into the subduction zone cause over-pressures along the megathrust and prism splay faults. Overpressure induces SSEs that locally increase permeability. After an SSE, swelling clays and ductile deformation reduce permeability within months, resetting the conditions for developing overpressure. We tested such a hypothesis by measuring the hydraulic permeability of fractured sedimentary rocks making up the core of the accretionary prism. Tests were performed using a newly developed X-ray transparent pressure vessel mounted inside a micro-computed tomography scanner (mCT) that allowed in-situ observation of fracture evolution as a function of confining pressure, time, and exposure to water. The tested rocks were probably subducted to ~7.5 km and are calcareous-glauconitic fine-grained sandstones with a silty matrix from the Late Cretaceous-to-Paleocene Tinui Group containing ~15% vol% of clay minerals. After exposure to high confining pressure and water, the samples regained pre-fracture permeability in tens of days. mCT imagery suggests that fracture clogging, possibly due to clay expansion, controls healing. We propose that slow slip events in the northern HM open fault fractures and allow drainage at the beginning of the slip cycle, followed by fracture clogging due to swelling clays and ductile deformation, with the duration of the cycle regulated by the interplay of these processes. 
    more » « less
  4. Hodges, K (Ed.)
    We develop a linear viscous constitutive relationship for pressure solution constrained by models of deformed metasedimentary rocks and observations of exposed rocks from ancient subduction zones. We include pressure and temperature dependence on the solubility of silica in fluid by parameterizing a practical van’t Hoff relationship. This general flow law is well suited for making predictions about interseismic behavior of subduction zones. We apply the flow law to Cascadia, where thermal structure, geometry, relative plate velocity, and Global Positioning System velocity field are well constrained. Results are consistent with the temperature conditions at which resolvable ductile strain is recorded in subducted mudstones (at depths near the updip limit of the seismogenic zone) and with relative plate motion accommodated completely by viscous deformation (at depths near the downdip limit of the seismogenic zone). The flow law also predicts the observed forearc tapering of slip rate deficit with depth. 
    more » « less
  5. null (Ed.)
    Deformation in crustal-scale shear zones occurs over a range of pressure-temperature-time (P-T-t) conditions, both because they may be vertically extensive structures that simultaneously affect material from the lower crust to the surface, and because the conditions at which any specific volume of rock is deformed evolve over time, as that material is advected by fault activity. Extracting such P-T-t records is challenging, because structures may be overprinted by progressive deformation. In addition, granitic rocks, in particular, may lack syn-kinematic mineral assemblages amenable to traditional metamorphic petrology and petrochronology. We overcome these challenges by studying the normal-sense Simplon Shear Zone (SSZ) in the central Alps, where strain localization in the exhuming footwall caused progressive narrowing of the shear zone, resulting in a zonation from high-T shearing preserved far into the footwall, to low-T shearing adjacent to the hanging wall. The Ti-in-quartz and Si-in-phengite thermobarometers yield deformation P-T conditions, as both were reset syn-kinematically, and although the sheared metagranites lack typical petrochronometers, we estimate the timing of deformation by comparing our calculated deformation temperatures to published thermochronological ages. The exposed SSZ footwall preserves evidence for retrograde deformation during exhumation, from just below amphibolite-facies conditions (∼490°C, 6.7 kbar) at ∼24.5 Ma, to lower greenschist-facies conditions (∼305°C, 1.5 kbar) at ∼11.5 Ma, with subsequent slip taken up by brittle faulting. Our estimates fall within the P-T-t brackets provided by independent constraints on the maximum and minimum conditions of retrograde ductile deformation, and compare reasonably well to alternative approaches for estimating P-T. 
    more » « less