skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Neumann problem on the domain in 𝕊 3 bounded by the Clifford torus
Abstract In this study, the solution of the Neumann problem associated with the CR Yamabe operator on a subset Ω \Omegaof the CR manifold S 3 {{\mathbb{S}}}^{3}bounded by the Clifford torus Σ \Sigmais discussed. The Yamabe-type problem of finding a contact form on Ω \Omegawhich has zero Tanaka-Webster scalar curvature and for which Σ \Sigmahas a constant p p-mean curvature is also discussed.  more » « less
Award ID(s):
2103392
PAR ID:
10633474
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
De Gruyter Brill
Date Published:
Journal Name:
Advanced Nonlinear Studies
Volume:
23
Issue:
1
ISSN:
2169-0375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We show that the affine vertex superalgebra V k ( o s p 1 | 2 n ) V^{k}(\mathfrak{osp}_{1|2n})at generic level 𝑘 embeds in the equivariant 𝒲-algebra of s p 2 n \mathfrak{sp}_{2n}times 4 n 4nfree fermions.This has two corollaries:(1) it provides a new proof that, for generic 𝑘, the coset Com ( V k ( s p 2 n ) , V k ( o s p 1 | 2 n ) ) \operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}),V^{k}(\mathfrak{osp}_{1|2n}))is isomorphic to W ( s p 2 n ) \mathcal{W}^{\ell}(\mathfrak{sp}_{2n})for = ( n + 1 ) + ( k + n + 1 ) / ( 2 k + 2 n + 1 ) \ell=-(n+1)+(k+n+1)/(2k+2n+1), and(2) we obtain the decomposition of ordinary V k ( o s p 1 | 2 n ) V^{k}(\mathfrak{osp}_{1|2n})-modules into V k ( s p 2 n ) W ( s p 2 n ) V^{k}(\mathfrak{sp}_{2n})\otimes\mathcal{W}^{\ell}(\mathfrak{sp}_{2n})-modules.Next, if 𝑘 is an admissible level and ℓ is a non-degenerate admissible level for s p 2 n \mathfrak{sp}_{2n}, we show that the simple algebra L k ( o s p 1 | 2 n ) L_{k}(\mathfrak{osp}_{1|2n})is an extension of the simple subalgebra L k ( s p 2 n ) W ( s p 2 n ) L_{k}(\mathfrak{sp}_{2n})\otimes{\mathcal{W}}_{\ell}(\mathfrak{sp}_{2n}).Using the theory of vertex superalgebra extensions, we prove that the category of ordinary L k ( o s p 1 | 2 n ) L_{k}(\mathfrak{osp}_{1|2n})-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects.It is equivalent to a certain subcategory of W ( s p 2 n ) \mathcal{W}_{\ell}(\mathfrak{sp}_{2n})-modules.A similar result also holds for the category of Ramond twisted modules.Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary L k ( s p 2 n ) L_{k}(\mathfrak{sp}_{2n})-modules are rigid. 
    more » « less
  2. Abstract We study the Yamabe flow starting from an asymptotically flat manifold ( M n , g 0 ) (M^{n},g_{0}).We show that the flow converges to an asymptotically flat, scalar flat metric in a weighted global sense if Y ( M , [ g 0 ] ) > 0 Y(M,[g_{0}])>0, and show that the flow does not converge otherwise.If the scalar curvature is nonnegative and integrable, then the ADM mass at time infinity drops by the limit of the total scalar curvature along the flow. 
    more » « less
  3. Abstract We introduce a distributional Jacobian determinant det D V β ( D v ) \det DV_{\beta}(Dv)in dimension two for the nonlinear complex gradient V β ( D v ) = | D v | β ( v x 1 , v x 2 ) V_{\beta}(Dv)=\lvert Dv\rvert^{\beta}(v_{x_{1}},-v_{x_{2}})for any β > 1 \beta>-1, whenever v W loc 1 , 2 v\in W^{1\smash{,}2}_{\mathrm{loc}}and β | D v | 1 + β W loc 1 , 2 \beta\lvert Dv\rvert^{1+\beta}\in W^{1\smash{,}2}_{\mathrm{loc}}.This is new when β 0 \beta\neq 0.Given any planar ∞-harmonic function 𝑢, we show that such distributional Jacobian determinant det D V β ( D u ) \det DV_{\beta}(Du)is a nonnegative Radon measure with some quantitative local lower and upper bounds.We also give the following two applications. Applying this result with β = 0 \beta=0, we develop an approach to build up a Liouville theorem, which improves that of Savin.Precisely, if 𝑢 is an ∞-harmonic function in the whole R 2 \mathbb{R}^{2}with lim inf R inf c R 1 R B ( 0 , R ) | u ( x ) c | d x < , \liminf_{R\to\infty}\inf_{c\in\mathbb{R}}\frac{1}{R}\barint_{B(0,R)}\lvert u(x)-c\rvert\,dx<\infty,then u = b + a x u=b+a\cdot xfor some b R b\in\mathbb{R}and a R 2 a\in\mathbb{R}^{2}.Denoting by u p u_{p}the 𝑝-harmonic function having the same nonconstant boundary condition as 𝑢, we show that det D V β ( D u p ) det D V β ( D u ) \det DV_{\beta}(Du_{p})\to\det DV_{\beta}(Du)as p p\to\inftyin the weak-⋆ sense in the space of Radon measure.Recall that V β ( D u p ) V_{\beta}(Du_{p})is always quasiregular mappings, but V β ( D u ) V_{\beta}(Du)is not in general. 
    more » « less
  4. Abstract We study the family of irreducible modules for quantum affine 𝔰 𝔩 n + 1 {\mathfrak{sl}_{n+1}}whose Drinfeld polynomials are supported on just one node of the Dynkin diagram. We identify all the prime modules in this family and prove a unique factorization theorem. The Drinfeld polynomials of the prime modules encode information coming from the points of reducibility of tensor products of the fundamental modules associated to A m {A_{m}}with m n {m\leq n}. These prime modules are a special class of the snake modules studied by Mukhin and Young. We relate our modules to the work of Hernandez and Leclerc and define generalizations of the category 𝒞 - {\mathscr{C}^{-}}. This leads naturally to the notion of an inflation of the corresponding Grothendieck ring. In the last section we show that the tensor product of a (higher order) Kirillov–Reshetikhin module with its dual always contains an imaginary module in its Jordan–Hölder series and give an explicit formula for its Drinfeld polynomial. Together with the results of [D. Hernandez and B. Leclerc,A cluster algebra approach toq-characters of Kirillov–Reshetikhin modules,J. Eur. Math. Soc. (JEMS) 18 2016, 5, 1113–1159] this gives examples of a product of cluster variables which are not in the span of cluster monomials. We also discuss the connection of our work with the examples arising from the work of [E. Lapid and A. Mínguez,Geometric conditions for \square-irreducibility of certain representations of the general linear group over a non-archimedean local field,Adv. Math. 339 2018, 113–190]. Finally, we use our methods to give a family of imaginary modules in type D 4 {D_{4}}which do not arise from an embedding of A r {A_{r}}with r 3 {r\leq 3}in D 4 {D_{4}}. 
    more » « less
  5. Abstract For every d 3 d\geq 3, we construct a noncompact smooth 𝑑-dimensional Riemannian manifold with strictly positive sectional curvature without isoperimetric sets for any volume below 1.We construct a similar example also for the relative isoperimetric problem in (unbounded) convex sets in R d \mathbb{R}^{d}.The examples we construct have nondegenerate asymptotic cone.The dimensional constraint d 3 d\geq 3is sharp.Our examples exhibit nonexistence of isoperimetric sets only for small volumes; indeed, in nonnegatively curved spaces with nondegenerate asymptotic cones, isoperimetric sets with large volumes always exist.This is the first instance of noncollapsed nonnegatively curved space without isoperimetric sets. 
    more » « less