skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 25, 2026

Title: Climate and hybridization shape stomatal trait evolution in Populus
Abstract Stomata play a critical role in regulating plant responses to climate. Where sister species differ in stomatal traits, interspecific gene flow can influence the evolutionary trajectory of trait variation, with consequences to adaptation.Leveraging six latitudinally-distributed transects spanning the natural hybrid zone betweenPopulus trichocarpa–P. balsamifera, we used whole genome resequencing and replicate common garden experiments to test the role that interspecific gene flow and selection play to stomatal trait evolution.While species-specific differences in the distribution of stomata persist betweenP. balsamiferaandP. trichocarpa, hybrids on average resembledP. trichocarpa. Admixture mapping identified several candidate genes associated with stomatal trait variation in hybrids includingTWIST, a homolog ofSPEECHLESSinArabidopsis, that initiates stomatal development via asymmetric cell divisions. Geographic clines revealed candidate genes deviating from genome-wide average patterns of introgression, suggesting restricted gene flow and the maintenance of adaptive differences. Climate associations, particularly with precipitation, indicated selection shapes local ancestry at candidate genes across transects.These results highlight the role of climate in shaping stomatal trait evolution inPopulusand demonstrate how interspecific gene flow creates novel genetic combinations that may enhance adaptive potential in changing environments.  more » « less
Award ID(s):
1856450
PAR ID:
10633509
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Population demographic changes, alongside landscape, geographic and climate heterogeneity, can influence the timing, stability and extent of introgression where species hybridise. Thus, quantifying interactions across diverged lineages, and the relative contributions of interspecific genetic exchange and selection to divergence at the genome‐wide level is needed to better understand the drivers of hybrid zone formation and maintenance. We used seven latitudinally arrayed transects to quantify the contributions of climate, geography and landscape features to broad patterns of genetic structure across the hybrid zone ofPopulus trichocarpaandP. balsamiferaand evaluated the demographic context of hybridisation over time. We found genetic structure differed among the seven transects. While ancestry was structured by climate, landscape features influenced gene flow dynamics. Demographic models indicated a secondary contact event may have influenced contemporary hybrid zone formation with the origin of a putative hybrid lineage that inhabits regions with higher aridity than either of the ancestral groups. Phylogenetic relationships based on chloroplast genomes support the origin of this hybrid lineage inferred from demographic models based on the nuclear data. Our results point towards the importance of climate and landscape patterns in structuring the contact zones betweenP. trichocarpaandP. balsamiferaand emphasise the value whole genome sequencing can have to advancing our understanding of how neutral processes influence divergence across space and time. 
    more » « less
  2. Summary Plastic responses of plants to their environment vary as a result of genetic differentiation within and among species. To accurately predict rangewide responses to climate change, it is necessary to characterize genotype‐specific reaction norms across the continuum of historic and future climate conditions comprising a species' range.The North American hybrid zone ofPopulus trichocarpaandPopulus balsamiferarepresents a natural system that has been shaped by climate, geography, and introgression. We leverage a dataset containing 44 clonal genotypes from this natural hybrid zone, planted across 17 replicated common garden experiments spanning a broad climatic range. Growth and mortality were measured over 2 yr, enabling us to model reaction norms for each genotype across these tested environments.Species ancestry and intraspecific genomic variation significantly influenced growth across environments, with genotypic variation in reaction norms reflecting a trade‐off between cold tolerance and growth. Using modeled reaction norms for each genotype, we predicted that genotypes with moreP. trichocarpaancestry may gain an advantage under warmer climates.Spatial shifts of the hybrid zone could facilitate the spread of beneficial alleles into novel climates. These results highlight that genotypic variation in responses to temperature will have landscape‐level effects. 
    more » « less
  3. Summary The scope of plant control over its microbiome is a central question in evolutionary biology and agriculture. Leaf traits are known to shape pathogen colonization and disease development, but their impact on the broader community of largely non‐pathogenic fungi that colonize plant leaves remains an open question.We used reciprocal common gardens of the model tree,Populus trichocarpa(black cottonwood), to examine relationships between leaf traits and the leaf mycobiome in two strongly contrasting environments. We measured six leaf traits (stomatal length, stomatal density, carbon‐to‐nitrogen ratio, leaf thickness, leaf dry matter content, and specific leaf area) and used fungal marker gene sequencing to characterize leaf fungal communities for 57 tree genotypes replicated in one mesic and one xeric common garden (809 trees).Several leaf traits covaried with the leaf mycobiome, yet one relationship was paramount: plant genotypes with longer, sparser leaf stomata hosted a greater richness and diversity of more similar fungal species compared to plant genotypes with shorter, denser leaf stomata.These relationships, while modulated by the environment plants were sourced from and grown in, suggest that stomatal traits may be a general mechanism through which plants and the leaf mycobiome influence one another. 
    more » « less
  4. Summary A prevailing hypothesis posits that achieving higher maximum rates of leaf carbon gain and water loss is constrained by geometry and/or selection to limit the allocation of epidermal area to stomata (fS). Under this ‘stomatal‐area minimization hypothesis’, highergs,maxis associated with greater numbers of smaller stomata because this trait combination increasesgs,maxwith minimal increase infS, leading to relative conservation offSsemi‐independent ofgs,maxdue to coordination in stomatal size, density, and pore depth. An alternative hypothesis is that the evolution of highergs,maxcan be enabled by a greater epidermal area allocated to stomata, leading to positive covariation betweenfSandgs,max; we call this the ‘stomatal‐area adaptation hypothesis’. Under this hypothesis, the interspecific scaling betweengs,max, stomatal density, and stomatal size is a by‐product of selection on a moving optimalgs,max.We integrated biophysical and evolutionary quantitative genetic modeling with phylogenetic comparative analyses of a global data set of stomatal density and size from 2408 vascular forest species. The models present specific assumptions of both hypotheses and deduce predictions that can be evaluated with our empirical analyses of forest plants.There are three main results. First, neither the stomatal‐area minimization nor adaptation hypothesis is sufficient to be supported. Second, estimates of interspecific scaling from common regression methods cannot reliably distinguish between hypotheses when stomatal size is bounded. Third, we reconcile both hypotheses with the data by including an additional assumption that stomatal size is bounded by a wide range and under selection; we refer to this synthetic hypothesis as the ‘stomatal adaptation + bounded size’ hypothesis.This study advances our understanding of scaling between stomatal size and density by mathematically describing specific assumptions of competing hypotheses, demonstrating that existing hypotheses are inconsistent with observations, and reconciling these hypotheses with phylogenetic comparative analyses by postulating a synthetic model of selection ongs,max,fS, and stomatal size. 
    more » « less
  5. Summary Phenotypic and genomic diversity inArabidopsis thalianamay be associated with adaptation along its wide elevational range, but it is unclear whether elevational clines are consistent among different mountain ranges.We took a multi‐regional view of selection associated with elevation. In a diverse panel of ecotypes, we measured plant traits under alpine stressors (low CO2partial pressure, high light, and night freezing) and conducted genome‐wide association studies.We found evidence of contrasting locally adaptive regional clines. Western Mediterranean ecotypes showed low water use efficiency (WUE)/early flowering at low elevations to high WUE/late flowering at high elevations. Central Asian ecotypes showed the opposite pattern. We mapped different candidate genes for each region, and some quantitative trait loci (QTL) showed elevational and climatic clines likely maintained by selection. Consistent with regional heterogeneity, trait and QTL clines were evident at regional scales (c. 2000 km) but disappeared globally. Antioxidants and pigmentation rarely showed elevational clines. High elevation east African ecotypes might have higher antioxidant activity under night freezing.Physiological and genomic elevational clines in different regions can be unique, underlining the complexity of local adaptation in widely distributed species, while hindering global trait–environment or genome–environment associations. To tackle the mechanisms of range‐wide local adaptation, regional approaches are thus warranted. 
    more » « less