Abstract Mass-loss influences stellar evolution, especially for massive stars with strong winds. Stellar wind bow shock nebulae driven by Galactic OB stars can be used to measure mass-loss rates ( ). The standoff distance (R0) between the star and the bow shock is set by momentum flux balance between the stellar wind and the surrounding interstellar medium (ISM). We created the Milky Way Project: mass-loss rates for OB Stars driving infrared bow shocks (MOBStIRS) using the online Zooniverse citizen science platform. We enlisted several hundred students to measureR0and two other projected shape parameters for 764 cataloged infrared bow shocks. MOBStIRS incorporated 1528 JPEG cutout images produced from Spitzer GLIMPSE and MIPSGAL survey data. Measurements were aggregated to compute shape parameters for each bow shock image deemed high quality by participants. The average statistical uncertainty onR0is 12.5% but varies from <5% to ∼40% among individual bow shocks, contributing significantly to the total error budget of . The derived nebular morphologies agree well with (magneto) hydrodynamic simulations of bow shocks driven by the winds of OB stars moving atVa = 10–40 km s−1with respect to the ambient ISM. A systematic correction toR0to account for viewing angle appears unnecessary for computing . Slightly more than half of MOBStIRS bow shocks are asymmetric, which could indicate anisotropic stellar winds, ISM clumping on sub-pc scales, time-dependent instabilities, and/or misalignments between the local ISM magnetic field and the star-bow-shock axis.
more »
« less
This content will become publicly available on July 23, 2026
Fundamental Parameters for Central Stars of 103 Infrared Bow Shock Nebulae
Abstract Stellar bow shock nebulae are arcuate shock fronts formed by the interaction of radiation-driven stellar winds and the relative motion of the ambient interstellar material. Stellar bow shock nebulae provide a promising means to measure wind-driven mass loss, independent of other established methods. In this work, we characterize the stellar sources at the center of bow shock nebulae drawn from all-sky catalogs of 24μm–selected nebulae. We obtain new, low-resolution blue optical spectra for 104 stars and measure stellar parameters temperatureTeff, surface gravity , and projected rotational broadening . We perform additional photometric analysis to measure stellar radiusR*, luminosityL*, and visual-band extinctionAV. All but one of our targets are O and early B stars, with temperatures ranging fromT= 16.5 to 46.8 kK, gravities from 2.57 to 4.60, and from <100 to 400 km s−1. With the exception of rapid rotatorζOph, bow shock stars do not rotate at or near critical velocities. At least 60 of 103 (60%) OB bow shock stars are binaries, consistent with the multiplicity fraction of other OB samples. The sample shows a runaway fraction of 23%, with 19 stars havingv2D≥ 25 km s−1. Of the 19 runaways, at least 15 (≥79%) are binaries, favoring dynamical ejection over the binary supernova channel for producing runaways. We provide a comprehensive census of stellar parameters for bow shock stars, useful as a foundation for determining the mass-loss rates for OB-type stars—one of the single most critical factors in stellar evolution governing the production of neutron stars and black holes.
more »
« less
- Award ID(s):
- 2108349
- PAR ID:
- 10633572
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 988
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 183
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We used the Immersion GRating Infrared Spectrometer (IGRINS) to determine fundamental parameters for 61 K- and M-type young stellar objects (YSOs) located in the Ophiuchus and Upper Scorpius star-forming regions. We employed synthetic spectra and a Markov chain Monte Carlo approach to fit specificK-band spectral regions and determine the photospheric temperature (T), surface gravity ( ), magnetic field strength (B), projected rotational velocity ( ), andK-band veiling (rK). We determinedBfor ∼46% of our sample. Stellar parameters were compared to the results from Taurus-Auriga and the TW Hydrae association presented in Paper I of this series. We classified all the YSOs in the IGRINS survey with infrared spectral indices from Two Micron All Sky Survey and Wide-field Infrared Survey Explorer photometry between 2 and 24μm. We found that Class II YSOs typically have lower and , similarB, and higherK-band veiling than their Class III counterparts. Additionally, we determined the stellar parameters for a sample of K and M field stars also observed with IGRINS. We have identified intrinsic similarities and differences at different evolutionary stages with our homogeneous determination of stellar parameters in the IGRINS YSO survey. Considering as a proxy for age, we found that the Ophiuchus and Taurus samples have a similar age. We also find that Upper Scorpius and TWA YSOs have similar ages, and are more evolved than Ophiuchus/Taurus YSOs.more » « less
-
Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure , , and ∇[Fe/H]= −0.23 ± 0.15 dex . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure , , and ∇[Fe/H]= −0.46 ± 0.10 dex , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L⊙) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s.more » « less
-
Abstract We used the Keck Planet Imager and Characterizer to obtain high-resolution (R∼ 35,000)K-band spectra ofκAndromedae b, a planetary-mass companion orbiting the B9V star,κAndromedae A. We characterized its spin, radial velocity, and bulk atmospheric parameters through use of a forward-modeling framework to jointly fit planetary spectra and residual starlight speckles, obtaining likelihood-based posterior probabilities. We also detected H2O and CO in its atmosphere via cross correlation. We measured a value forκAndromedae b of 38.42 ± 0.05 km s−1, allowing us to extend our understanding of the population of close-in bound companions at higher rotation rates. This rotation rate is one of the highest spins relative to breakup velocity measured to date, at close to 50% of breakup velocity. We identify a radial velocity km s−1, which we use with existing astrometry and radial velocity measurements to update the orbital fit. We also measure an effective temperature of 1700 ± 100 K and a of 4.7 ± 0.5 cgs dex.more » « less
-
Abstract Young, self-luminous super-Jovian companions discovered by direct imaging provide a challenging test for planet formation and evolution theories. By spectroscopically characterizing the atmospheric compositions of these super-Jupiters, we can constrain their formation histories. Here we present studies of the recently discovered HIP 99770 b, a 16MJuphigh-contrast companion on a 17 au orbit, using the fiber-fed high-resolution spectrograph KPIC ( ∼ 35,000) on the Keck II telescope. OurK-band observations led to detections of H2O and CO in the atmosphere of HIP 99770 b. We carried out free retrieval analyses usingpetitRADTRANSto measure its chemical abundances, including the metallicity and C/O ratio, projected rotation velocity ( ), and radial velocity (RV). We found that the companion’s atmosphere has C/O and [M/H] (1σconfidence intervals), values consistent with those of the Sun and with a companion formation via gravitational instability or core accretion. The projected rotation velocity km s−1is small relative to other directly imaged companions with similar masses and ages. This may imply a nearly pole-on orientation or effective magnetic braking by a circumplanetary disk. In addition, we added the companion-to-primary relative RV measurement to the orbital fitting and obtained updated constraints on orbital parameters. Detailed characterization of super-Jovian companions within 20 au like HIP 99770 b is critical for understanding the formation histories of this population.more » « less
An official website of the United States government
