skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A new archaeostomatopod from the Pennsylvanian Wea Shale Member, Nebraska
Mantis shrimp (Stomatopoda) are extant, marine, predatory arthropods, but these malacostracan pancrustaceans are also occasionally preserved in fossil assemblages, particularly in Carboniferous and Cretaceous deposits. Carboniferous species fall into two suborders—Palaeostomatopodea and Archaeostomatopodea—and represent the ancestral forms that gave rise to modern lineages. Herein, we describe hitherto unknown specimens belonging to the archaeostomatopod genus Tyrannophontes from the Pennsylvanian-aged Wea Shale Member, eastern Nebraska. We explore the preservation of these fossils using scanning electron microscopy and energy dispersive X-ray spectroscopy. These approaches reveal additional morphological characteristics, including unique appendicular data, such as the earliest occurrence of biramous gilled appendages in Stomatopoda. We suggest that further examination of black shales will likely uncover novel records of these rare pancrustaceans.  more » « less
Award ID(s):
2216215
PAR ID:
10633703
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Museum of Natural History
Date Published:
Journal Name:
American Museum novitates
Issue:
4028
ISSN:
0003-0082
Page Range / eLocation ID:
1-25
Subject(s) / Keyword(s):
Stomatopoda Nebraska Classification Paleontology Pennsylvanian Carboniferous Arthropoda Crustacea Taphonomy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stomatopoda, commonly known as mantis shrimps, are notable for their enlarged second maxillipeds encompassing the raptorial claw. The form of the claw can be used to divide them into two basic groups: smashers and spearers. Previous phylogenetic studies of Stomatopoda have focused on morphology or a few genes, though there have been whole mitochondrial genomes published for 15 members of Stomatopoda. However, the sampling has been somewhat limited with key taxa not included. Here, nine additional stomatopod mitochondrial genomes were generated and combined with the other available mitogenomes for a phylogenetic analysis. We used the 13 protein coding genes, as well as 12S rRNA, 16S rRNA genes, and included nuclear 18S rRNA gene sequences. Different rooting options were used for the analyses: (1) single and multiple outgroups from various eumalocostracan relatives and (2) a stomatopod-only dataset, with Hemisquilla californiensis used to root the topologies, based on the current hypothesis that Hemisquilla is the sister group to the rest of Stomatopoda. The eumalocostracan-rooted analyses all showed H. californiensis nested within Stomatopoda, raising doubts as to previous hypotheses as to its placement. Allowing for the rooting difference, the H. californiensis outgroup datasets had the same tree topology as the eumalocostracan outgroup datasets with slight variation at poorly supported nodes. Of the major taxonomic groupings sampled to date, Squilloidea was generally found to be monophyletic while Gonodactyloidea was not. The position of H. californiensis was found inside its superfamily, Gonodactyloidea, and grouped in a weakly supported clade containing Odontodactylus havanensis and Lysiosquillina maculata for the eumalocostracan-rooted datasets. An ancestral state reconstruction was performed on the raptorial claw form and provides support that spearing is the ancestral state for extant Stomatopoda, with smashing evolving subsequently one or more times. 
    more » « less
  2. Mantis shrimps (Stomatopoda) possess in common with other crustaceans, and with Hexapoda, specific neuroanatomical attributes of the protocerebrum, the most anterior part of the arthropod brain. These attributes include assemblages of interconnected centers called the central body complex and in the lateral protocerebra, situated in the eyestalks, paired mushroom bodies. The phenotypic homologues of these centers across Panarthropoda support the view that ancestral integrative circuits crucial to action selection and memory have persisted since the early Cambrian or late Ediacaran. However, the discovery of another prominent integrative neuropil in the stomatopod lateral protocerebrum raises the question whether it is unique to Stomatopoda or at least most developed in this lineage, which may have originated in the upper Ordovician or early Devonian. Here, we describe the neuroanatomical structure of this center, called the reniform body. Using confocal microscopy and classical silver staining, we demonstrate that the reniform body receives inputs from multiple sources, including the optic lobe's lobula. Although the mushroom body also receives projections from the lobula, it is entirely distinct from the reniform body, albeit connected to it by discrete tracts. We discuss the implications of their coexistence in Stomatopoda, the occurrence of the reniform body in another eumalacostracan lineage and what this may mean for our understanding of brain functionality in Pancrustacea. 
    more » « less
  3. Mantis shrimps (Stomatopoda) possess in common with other crustaceans, and with Hexapoda, specific neuroanatomical attributes of the protocerebrum, the most anterior part of the arthropod brain. These attributes include assemblages of interconnected centers called the central body complex and in the lateral protocerebra, situated in the eyestalks, paired mushroom bodies. The phenotypic homologues of these centers across Panarthropoda support the view that ancestral integrative circuits crucial to action selection and memory have persisted since the early Cambrian or late Ediacaran. However, the discovery of another prominent integrative neuropil in the stomatopod lateral protocerebrum raises the question whether it is unique to Stomatopoda or at least most developed in this lineage, which may have originated in the upper Ordovician or early Devonian. Here, we describe the neuroanatomical structure of this center, called the reniform body. Using confocal microscopy and classical silver staining, we demonstrate that the reniform body receives inputs from multiple sources, including the optic lobe's lobula. Although the mushroom body also receives projections from the lobula, it is entirely distinct from the reniform body, albeit connected to it by discrete tracts. We discuss the implications of their coexistence in Stomatopoda, the occurrence of the reniform body in another eumalacostracan lineage and what this may mean for our understanding of brain functionality in Pancrustacea. 
    more » « less
  4. Abstract We present an updated set of Carboniferous Sr, C and O isotope stratigraphies based on the existing literature, given the importance of chemostratigraphy for stratigraphic correlation in the Carboniferous. The Carboniferous87Sr/86Sr record, constructed using brachiopods and conodonts, exhibits five first-order phases beginning with a rapid decline from a peak value ofc.0.70840 at the Devonian–Carboniferous boundary to a trough (0.70776–0.70771) in the Visean followed by a rise to a plateau (c.0.70827) in the upper Bashkirian. A decline toc.0.70804 follows from the lowermost Gzhelian to the close of the Carboniferous. Contemporaneous carbonate δ13C records exhibit considerable variability between materials analysed and by region, although pronounced excursions (e.g. the mid-Tournaisian positive excursion and the end-Kasimovian negative excursion) are present in most records. Bulk carbonate δ13C records from South China and Europe, however, are generally consistent with those of brachiopod calcite from North America in terms of both absolute values and trends. Both brachiopod calcite and conodont phosphate δ18O document large regional variability, confirming that Carboniferous δ18O records are invalid for precise stratigraphic correlation. Nevertheless, significant positive δ18O shifts in certain intervals (e.g. mid-Tournaisian and the Mississippian–Pennsylvanian transition) can be used for global correlation. 
    more » « less
  5. Abstract The apex of Earth's penultimate icehouse during the Permo‐Carboniferous coincided with dramatic glacial‐interglacial fluctuations in atmospheric CO2, sea level, and high‐latitude ice. Global transformations in marine fauna also occurred during this interval, including a rise to peak foraminiferal diversity, suggesting that glacial‐interglacial climate change impacted marine ecosystems. Nevertheless, changes in ocean circulation and temperature over the Permo‐Carboniferous and their influence on marine ecosystem change are largely unknown. Here, we present simulations of glacial and interglacial phases of the latest Carboniferous‐early Permian (∼305‐295 Ma) using the Community Earth System Model version 1.2 to provide estimates of global ocean circulation and temperature during this interval. We characterize general patterns of glacial and interglacial surface ocean currents, temperature, and salinity, and compare them to the documented abundance and distribution of Permo‐Carboniferous marine fauna as well as a preindustrial climate simulation. We then explore how glacial‐interglacial changes in atmospheric CO2, sea level, and high‐latitude ice extent impact thermohaline circulation. We find that glacial‐interglacial changes in equatorial surface temperatures are consistently ∼3–6°C. Ocean circulation is stronger overall in the glacial simulation, particularly as lower atmospheric CO2enables deep convection in the Northern Hemisphere. Wind‐driven circulation, heat transport, and upwelling intensity are stronger overall in the Permo‐Carboniferous superocean relative to the preindustrial oceans at the same level of atmospheric CO2. We also find that CO2‐induced glacial conditions of the early Permian may have promoted foraminiferal diversity through increased thermal gradients and suppressed riverine input in marine shelf environments. 
    more » « less