skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Product Design Platforming: A Comparison of Two Equilibrium Solution Methods
Abstract Global product platforms can reduce production costs through economies of scale and learning but may decrease revenues by restricting the ability to customize for each market. We model the global platforming problem as a Nash equilibrium among oligopolistic competing firms, each maximizing its profit across markets with respect to its pricing, design, and platforming decisions. We develop and compare two methods to identify Nash equilibria: (1) a sequential iterative optimization (SIO) algorithm, in which each firm solves a mixed-integer nonlinear programming problem globally, with firms iterating until convergence; and (2) a mathematical program with equilibrium constraints (MPEC) that solves the Karush Kuhn Tucker conditions for all firms simultaneously. The algorithms’ performance and results are compared in a case study of plug-in hybrid electric vehicles where firms choose optimal battery capacity and whether to platform or differentiate battery capacity across the US and Chinese markets. We examine a variety of scenarios for (1) learning rate and (2) consumer willingness to pay (WTP) for range in each market. For the case of two firms, both approaches find the Nash equilibrium in all scenarios. On average, the SIO approach solves 200 times faster than the MPEC approach, and the MPEC approach is more sensitive to the starting point. Results show that the optimum for each firm is to platform when learning rates are high or the difference between consumer willingness to pay for range in each market is relatively small. Otherwise, the PHEVs are differentiated with low-range for China and high-range for the US.  more » « less
Award ID(s):
1943438
PAR ID:
10633813
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Mechanical Design
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
145
Issue:
6
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We study a new kind of nonzero-sum stochastic differential game with mixed impulse/switching controls, motivated by strategic competition in commodity markets. A representative upstream firm produces a commodity that is used by a representative downstream firm to produce a final consumption good. Both firms can influence the price of the commodity. By shutting down or increasing generation capacities, the upstream firm influences the price with impulses. By switching (or not) to a substitute, the downstream firm influences the drift of the commodity price process. We study the resulting impulse-regime switching game between the two firms, focusing on explicit threshold-type equilibria. Remarkably, this class of games naturally gives rise to multiple potential Nash equilibria, which we obtain thanks to a verification-based approach. We exhibit three candidate types of equilibria depending on the ultimate number of switches by the downstream firm (zero, one or an infinite number of switches). We illustrate the diversification effect provided by vertical integration in the specific case of the crude oil market. Our analysis shows that the diversification gains strongly depend on the pass-through from the crude price to the gasoline price. 
    more » « less
  2. Abstract We study list price competition when firms can individually target consumer discounts (at a cost) afterwards, and we address recent privacy regulation (like the GDPR) allowing consumers to choose whether to opt-in to targeting. Targeted consumers receive poaching and retention discount offers. Equilibrium discount offers are in mixed strategies, but only two firms vie for each contested consumer and final profits on them are Bertrand-like. When targeting is unrestricted, firm list pricing resembles monopoly. For plausible demand conditions and if targeting costs are not too low, firms and consumers are worse off with unrestricted targeting than banning it. However, targeting induces higher (lower) list prices if demand is convex (concave), and either side of the market can benefit if list prices shift enough in its favour. Given the choice, consumers opt in only when expected discounts exceed privacy costs. Under empirically plausible conditions, opt-in choice makes all consumers better off. 
    more » « less
  3. Electricity systems in many parts of the world are becoming more dependent upon natural gas as an electricity-generation fuel. As such, electricity and natural-gas markets are becoming more interconnected. Contemporaneously, some electricity and natural-gas markets are integrating vertically, through the merger of electricity and natural-gas suppliers. The market-efficiency impacts of such vertical integration are unclear. On one hand, vertical integration could exacerbate market power, whereas on another it could mitigate double marginalization. To study this question, this paper develops a Nash–Cournot model of the two interconnected markets. The model is converted into a linear complementarity problem, which allows deriving Nash equilibria readily. Some theoretical results are derived for the case of a merger involving symmetric firms. In addition, the model is applied to a stylized example with a range of parameter values. We find that integration is social-welfare enhancing—which implies that mitigating double marginalization outweighs the exercise of market power. In most cases, the effects of merger can give rise to a prisoner’s-dilemma-type outcome. Merger is beneficial to the merging firms. However, profits of non-merging firms and total supplier profits decrease following a merger. Overall, our results suggest that vertical integration in energy markets may be socially beneficial. JEL Classification:C61, C72, D43, L1, L94, L95, Q4 
    more » « less
  4. We study the market structure for emerging distribution-level energy markets with high renewable energy penetration. Renewable generation is known to be uncertain and has a close-to-zero marginal cost. In this paper, we use solar energy as an example of such zero-marginal-cost resources for our focused study. We first show that, under high penetration of solar generation, the classical real-time market mechanism can either exhibit significant price-volatility (when each firm is not allowed to vary the supply quantity), or induce price-fixing (when each firm is allowed to vary the supply quantity), the latter of which leads to extreme unfairness of surplus division. To overcome these issues, we propose a new rental-market mechanism that trades the usage-right of solar panels instead of real-time solar energy. We show that the rental market produces a stable and unique price (therefore eliminating price-volatility), maintains positive surplus for both consumers and firms (therefore eliminating price-fixing), and achieves the same social welfare as the traditional real-time market. A key insight is that rental markets turn uncertainty of renewable generation from a detrimental factor (that leads to price-volatility in real-time markets) to a beneficial factor (that increases demand elasticity and contributes to the desirable rental-market outcomes). 
    more » « less
  5. We consider a fundamental pricing model in which a fixed number of units of a reusable resource are used to serve customers. Customers arrive to the system according to a stochastic process and, upon arrival, decide whether to purchase the service, depending on their willingness to pay and the current price. The service time during which the resource is used by the customer is stochastic, and the firm may incur a service cost. This model represents various markets for reusable resources, such as cloud computing, shared vehicles, rotable parts, and hotel rooms. In the present paper, we analyze this pricing problem when the firm attempts to maximize a weighted combination of three central metrics: profit, market share, and service level. Under Poisson arrivals, exponential service times, and standard assumptions on the willingness-to-pay distribution, we establish a series of results that characterize the performance of static pricing in such environments. In particular, although an optimal policy is fully dynamic in such a context, we prove that a static pricing policy simultaneously guarantees 78.9% of the profit, market share, and service level from the optimal policy. Notably, this result holds for any service rate and number of units the firm operates. Our proof technique relies on a judicious construction of a static price that is derived directly from the optimal dynamic pricing policy. In the special case in which there are two units and the induced demand is linear, we also prove that the static policy guarantees 95.5% of the profit from the optimal policy. Our numerical findings on a large test bed of instances suggest that the latter result is quite indicative of the profit obtained by the static pricing policy across all parameters. 
    more » « less