skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Nitrogen enrichment drives accelerative effect of soil heterogeneity on the flowering phenology of a dominant grass
Abstract Plant phenology is affected by both abiotic conditions (i.e., temperature, nitrogen enrichment, and drought) and biotic conditions (i.e., species diversity). The degree of spatial heterogeneity in soil resources is known to influence community assembly and dynamics, but the relationship between resource heterogeneity and phenology or the potentially interactive effects of soil resources on phenology are less understood. We leveraged a tallgrass prairie restoration experiment that has manipulated soil nitrogen availability and soil depth over 20 years to test the effects of environmental heterogeneity, nutrient enrichment, and potentially interactive effects of global change drivers (nutrient enrichment and a drought manipulation) on the phenology of a highly dominant prairie grass (Andropogon gerardii). We recorded the timing of major developmental stages ofA. gerardiiin plots containing four soil heterogeneity treatments (control, soil depth heterogeneity, nutrient/depth heterogeneity, and nutrient/precipitation heterogeneity). We found that the boot, first spikelet, and emerged spikelet stages ofA. gerardiioccurred earlier in treatments with greater heterogeneity of soil nitrogen, and this effect was driven by the accelerative effect of nitrogen enrichment on phenology. Reduced precipitation increased the flowering length ofA. gerardiibut did not otherwise affect developmental phenology. There were no interactive effects among any soil resource treatments on phenology. These results advance our understanding of the relationship between plant phenology and global change drivers, which is important for understanding and predicting the timing of plant resource use and the provision of resources to higher trophic levels by plants under varying levels of resource availability.  more » « less
Award ID(s):
2025849 1922915
PAR ID:
10633901
Author(s) / Creator(s):
; ;
Publisher / Repository:
Ecosphere
Date Published:
Journal Name:
Ecosphere
Volume:
16
Issue:
1
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wild pollinators are critical to maintaining ecosystem services and facilitating crop production, but habitat degradation and resource loss are leading to worldwide pollinator declines. Nutrient enrichment and changes in rainfall due to global warming are drivers of global environmental change, and likely to impact pollinator foraging behavior and reproductive success through changes to the growth and phenology of flowering plants. Here, we provide a short review of pollinator conservation in the context of nutritional ecology and plant-pollinator interactions. Then, we present novel research into the effects of nutrient and rainfall variation on plant phenology. In this study, we experimentally manipulated the amount of water and supplemental nutrients available to wild sunflower (Helianthus annuus) and goldenrod (Solidagospp.) throughout their growing season. We evaluated how changes in growth and bloom time could impact resource availability for bumble bee (Bombus impatiens) queens preparing to overwinter. We found that fertilizer and rainfall alter plant bloom time by 2–18 days, though flowering response was species-specific. Fertilizer did not significantly affect plant growth or number of flowers produced when plants were grown under drought conditions. When water was not limiting, fertilized sunflowers bloomed in floral pulses. These findings carry important implications for growers and land managers, providing insight into potential drivers of wild pollinator decline and possible conservation strategies. 
    more » « less
  2. Hui, Dafeng (Ed.)
    Abstract While the relationship between genetic diversity and plant productivity has been established for many species, it is unclear whether environmental conditions and biotic associations alter the nature of the relationship. To address this, we investigated the interactive effects of genotypic diversity, drought and mycorrhizal association on plant productivity and plant traits. Our mesocosm study was set up at the Konza Prairie Biological Research Station, located in the south of Manhattan, Kansas. Andropogon gerardii, the focal species for our study, was planted in two levels of genotypic richness treatment: monoculture or three-genotype polyculture. A rainout shelter was constructed over half of the experimental area to impose a drought and Thiophanate-methyl fungicide was used to suppress arbuscular mycorrhizal fungi in selected pots within each genotypic richness and drought treatment. Genotypic richness and mycorrhizal association did not affect above-ground biomass of A. gerardii. Drought differentially affected the above-ground biomass, the number of flowers and bolts of A. gerardii genotypes, and the biomass and the functional traits also differed for monoculture versus polyculture. Our results suggest that drought and genotypic richness can have variable outcomes for different genotypes of a plant species. 
    more » « less
  3. Abstract Both mutualistic and pathogenic soil microbes are known to play important roles in shaping the fitness of plants, likely affecting plants at different life cycle stages.In order to investigate the differential effects of native soil mutualists and pathogens on plant fitness, we compared survival and reproduction of two annual tallgrass prairie plant species (Chamaecrista fasciculataandCoreopsis tinctoria) in a field study using 3 soil inocula treatments containing different compositions of microbes. The soil inocula types included fresh native whole soil taken from a remnant prairie containing both native mutualists and pathogens, soil enhanced with arbuscular mycorrhizal (AM) fungi derived from remnant prairies, and uninoculated controls.For both species, plants inoculated with native prairie AM fungi performed much better than those in uninoculated soil for all parts of the life cycle. Plants in the native whole prairie soil were either generally similar to plants in the uninoculated soil or had slightly higher survival or reproduction.Overall, these results suggest that native prairie AM fungi can have important positive effects on the fitness of early successional plants. As inclusion of prairie AM fungi and pathogens decreased plant fitness relative to prairie AM fungi alone, we expect that native pathogens also can have large effects on fitness of these annuals. Our findings support the use of AM fungi to enhance plant establishment in prairie restorations. 
    more » « less
  4. Abstract Under drought conditions, arbuscular mycorrhizal (AM) fungi may improve plant performance by facilitating the movement of water through extensive hyphal networks. When these networks interconnect neighboring plants in common mycorrhizal networks (CMNs), CMNs are likely to partition water among many individuals. The consequences of CMN-mediated water movement for plant interactions, however, are largely unknown. We set out to examine CMN-mediated interactions amongAndropogon gerardiiseedlings in a target-plant pot experiment, with watering (watered or long-term drought) and CMN status (intact or severed) as treatments. Intact CMNs improved the survival of seedlings under drought stress and mediated positive, facilitative plant interactions in both watering treatments. Watering increased mycorrhizal colonization rates and improved P uptake, particularly for large individuals. Under drought conditions, improved access to water most likely benefited neighboring plants interacting across CMNs. CMNs appear to have provided the most limiting resource within each treatment, whether P, water, or both, thereby improving survival and growth. Neighbors near large, photosynthate-fixing target plants likely benefited from their establishment of extensive hyphal networks that could access water and dissolved P within soil micropores. In plant communities, CMNs may be vital during drought, which is expected to increase in frequency, intensity, and length with climate change. 
    more » « less
  5. ABSTRACT Plants require water and nutrients for survival, although the effects of their availabilities on plant fitness differ amongst species. Genome size variation, within and across species, is suspected to influence plant water and nutrient requirements, but little is known about how variations in these resources concurrently affect plant fitness based on genome size. We examined how genome size variation between autopolyploid cytotypes influences plant morphological and physiological traits, and whether cytotype‐specific trait responses differ based on water and/or nutrient availability.Diploid and autotetraploidSolidago gigantea(Giant Goldenrod) were grown in a greenhouse under four soil water:N+P treatments (L:L, L:H, H:L, H:H), and stomata characteristics (size, density), growth (above‐ and belowground biomass, R/S), and physiological (Anet,E,WUE) responses were measured.Resource availabilities and cytotype identity influenced some plant responses but their effects were independent of each other. Plants grown in high‐water and nutrient treatments were larger, plants grown in low‐water or high‐nutrient treatments had higherWUEbut lowerE, andAnetandErates decreased as plants aged. Autotetraploids also had larger and fewer stomata, higher biomass and largerAnetthan diploids.Nutrient and water availability could influence intra‐ and interspecific competitive outcomes. AlthoughS. giganteacytotypes were not differentially affected by resource treatments, genome size may influence cytogeographic range patterning and population establishment likelihood. For instance, the larger size of autotetraploidS. giganteamight render them more competitive for resources and niche space than diploids. 
    more » « less