Abstract The rapid growth of uncharacterized enzymes and their functional diversity urge accurate and trustworthy computational functional annotation tools. However, current state-of-the-art models lack trustworthiness on the prediction of the multilabel classification problem with thousands of classes. Here, we demonstrate that a novel evidential deep learning model (named ECPICK) makes trustworthy predictions of enzyme commission (EC) numbers with data-driven domain-relevant evidence, which results in significantly enhanced predictive power and the capability to discover potential new motif sites. ECPICK learns complex sequential patterns of amino acids and their hierarchical structures from 20 million enzyme data. ECPICK identifies significant amino acids that contribute to the prediction without multiple sequence alignment. Our intensive assessment showed not only outstanding enhancement of predictive performance on the largest databases of Uniprot, Protein Data Bank (PDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG), but also a capability to discover new motif sites in microorganisms. ECPICK is a reliable EC number prediction tool to identify protein functions of an increasing number of uncharacterized enzymes.
more »
« less
Enzyme function prediction using contrastive learning
Enzyme function annotation is a fundamental challenge, and numerous computational tools have been developed. However, most of these tools cannot accurately predict functional annotations, such as enzyme commission (EC) number, for less-studied proteins or those with previously uncharacterized functions or multiple activities. We present a machine learning algorithm named CLEAN (contrastive learning–enabled enzyme annotation) to assign EC numbers to enzymes with better accuracy, reliability, and sensitivity compared with the state-of-the-art tool BLASTp. The contrastive learning framework empowers CLEAN to confidently (i) annotate understudied enzymes, (ii) correct mislabeled enzymes, and (iii) identify promiscuous enzymes with two or more EC numbers—functions that we demonstrate by systematic in silico and in vitro experiments. We anticipate that this tool will be widely used for predicting the functions of uncharacterized enzymes, thereby advancing many fields, such as genomics, synthetic biology, and biocatalysis.
more »
« less
- Award ID(s):
- 2019897
- PAR ID:
- 10634032
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science
- Volume:
- 379
- Issue:
- 6639
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 1358 to 1363
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract MotivationCarbohydrate-active enzymes (CAZymes) are extremely important to bioenergy, human gut microbiome, and plant pathogen researches and industries. Here we developed a new amino acid k-mer-based CAZyme classification, motif identification and genome annotation tool using a bipartite network algorithm. Using this tool, we classified 390 CAZyme families into thousands of subfamilies each with distinguishing k-mer peptides. These k-mers represented the characteristic motifs (in the form of a collection of conserved short peptides) of each subfamily, and thus were further used to annotate new genomes for CAZymes. This idea was also generalized to extract characteristic k-mer peptides for all the Swiss-Prot enzymes classified by the EC (enzyme commission) numbers and applied to enzyme EC prediction. ResultsThis new tool was implemented as a Python package named eCAMI. Benchmark analysis of eCAMI against the state-of-the-art tools on CAZyme and enzyme EC datasets found that: (i) eCAMI has the best performance in terms of accuracy and memory use for CAZyme and enzyme EC classification and annotation; (ii) the k-mer-based tools (including PPR-Hotpep, CUPP and eCAMI) perform better than homology-based tools and deep-learning tools in enzyme EC prediction. Lastly, we confirmed that the k-mer-based tools have the unique ability to identify the characteristic k-mer peptides in the predicted enzymes. Availability and implementationhttps://github.com/yinlabniu/eCAMI and https://github.com/zhanglabNKU/eCAMI. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Abstract MotivationDespite experimental and curation efforts, the extent of enzyme promiscuity on substrates continues to be largely unexplored and under documented. Providing computational tools for the exploration of the enzyme–substrate interaction space can expedite experimentation and benefit applications such as constructing synthesis pathways for novel biomolecules, identifying products of metabolism on ingested compounds, and elucidating xenobiotic metabolism. Recommender systems (RS), which are currently unexplored for the enzyme–substrate interaction prediction problem, can be utilized to provide enzyme recommendations for substrates, and vice versa. The performance of Collaborative-Filtering (CF) RSs; however, hinges on the quality of embedding vectors of users and items (enzymes and substrates in our case). Importantly, enhancing CF embeddings with heterogeneous auxiliary data, specially relational data (e.g. hierarchical, pairwise or groupings), remains a challenge. ResultsWe propose an innovative general RS framework, termed Boost-RS that enhances RS performance by ‘boosting’ embedding vectors through auxiliary data. Specifically, Boost-RS is trained and dynamically tuned on multiple relevant auxiliary learning tasks Boost-RS utilizes contrastive learning tasks to exploit relational data. To show the efficacy of Boost-RS for the enzyme–substrate prediction interaction problem, we apply the Boost-RS framework to several baseline CF models. We show that each of our auxiliary tasks boosts learning of the embedding vectors, and that contrastive learning using Boost-RS outperforms attribute concatenation and multi-label learning. We also show that Boost-RS outperforms similarity-based models. Ablation studies and visualization of learned representations highlight the importance of using contrastive learning on some of the auxiliary data in boosting the embedding vectors. Availability and implementationA Python implementation for Boost-RS is provided at https://github.com/HassounLab/Boost-RS. The enzyme-substrate interaction data is available from the KEGG database (https://www.genome.jp/kegg/).more » « less
-
Mura, Cameron (Ed.)Machine learning (ML) is increasingly being used to guide biological discovery in biomedicine such as prioritizing promising small molecules in drug discovery. In those applications, ML models are used to predict the properties of biological systems, and researchers use these predictions to prioritize candidates as new biological hypotheses for downstream experimental validations. However, when applied to unseen situations, these models can be overconfident and produce a large number of false positives. One solution to address this issue is to quantify the model’s prediction uncertainty and provide a set of hypotheses with a controlled false discovery rate (FDR) pre-specified by researchers. We propose CPEC, an ML framework for FDR-controlled biological discovery. We demonstrate its effectiveness using enzyme function annotation as a case study, simulating the discovery process of identifying the functions of less-characterized enzymes. CPEC integrates a deep learning model with a statistical tool known as conformal prediction, providing accurate and FDR-controlled function predictions for a given protein enzyme. Conformal prediction provides rigorous statistical guarantees to the predictive model and ensures that the expected FDR will not exceed a user-specified level with high probability. Evaluation experiments show that CPEC achieves reliable FDR control, better or comparable prediction performance at a lower FDR than existing methods, and accurate predictions for enzymes under-represented in the training data. We expect CPEC to be a useful tool for biological discovery applications where a high yield rate in validation experiments is desired but the experimental budget is limited.more » « less
-
Abstract MotivationThousands of genomes are publicly available, however, most genes in those genomes have poorly defined functions. This is partly due to a gap between previously published, experimentally characterized protein activities and activities deposited in databases. This activity deposition is bottlenecked by the time-consuming biocuration process. The emergence of large language models presents an opportunity to speed up the text-mining of protein activities for biocuration. ResultsWe developed FuncFetch—a workflow that integrates NCBI E-Utilities, OpenAI’s GPT-4, and Zotero—to screen thousands of manuscripts and extract enzyme activities. Extensive validation revealed high precision and recall of GPT-4 in determining whether the abstract of a given paper indicates the presence of a characterized enzyme activity in that paper. Provided the manuscript, FuncFetch extracted data such as species information, enzyme names, sequence identifiers, substrates, and products, which were subjected to extensive quality analyses. Comparison of this workflow against a manually curated dataset of BAHD acyltransferase activities demonstrated a precision/recall of 0.86/0.64 in extracting substrates. We further deployed FuncFetch on nine large plant enzyme families. Screening 26 543 papers, FuncFetch retrieved 32 605 entries from 5459 selected papers. We also identified multiple extraction errors including incorrect associations, nontarget enzymes, and hallucinations, which highlight the need for further manual curation. The BAHD activities were verified, resulting in a comprehensive functional fingerprint of this family and revealing that ∼70% of the experimentally characterized enzymes are uncurated in the public domain. FuncFetch represents an advance in biocuration and lays the groundwork for predicting the functions of uncharacterized enzymes. Availability and implementationCode and minimally curated activities are available at: https://github.com/moghelab/funcfetch and https://tools.moghelab.org/funczymedb.more » « less
An official website of the United States government

