skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Effect of strain and π-acidity on the catalytic efficiency of carbones in carbodiimide hydroboration
Structural variations of carbone catalysts impact efficiency in carbodiimide hydroboration. Acyclic carbodiphosphoranes create strain during HBpin activation, while carbodicarbenes proceedvia1,2-addition, yielding a less reactive hydride donor.  more » « less
Award ID(s):
2320718
PAR ID:
10634091
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Organic & Biomolecular Chemistry
ISSN:
1477-0520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Blair, Jaime E (Ed.)
    We examined the evolutionary history ofPhytophthora infestansand its close relatives in the 1c clade. We used whole genome sequence data from 69 isolates ofPhytophthoraspecies in the 1c clade and conducted a range of genomic analyses including nucleotide diversity evaluation, maximum likelihood trees, network assessment, time to most recent common ancestor and migration analysis. We consistently identified distinct and later divergence of the two MexicanPhytophthoraspecies,P.mirabilisandP.ipomoeae, fromP.infestansand other 1c clade species.Phytophthora infestansexhibited more recent divergence from other 1c clade species ofPhytophthorafrom South America,P.andinaandP.betacei. Speciation in the 1c clade and evolution ofP.infestansoccurred in the Andes.P.andina–P.betacei–P.infestansformed a species complex with indistinct species boundaries, hybridizations between the species, and short times to common ancestry. Furthermore, the distinction between modern Mexican and South AmericanP.infestansproved less discrete, suggesting gene flow between populations over time. Admixture analysis indicated a complex relationship among these populations, hinting at potential gene flow across these regions. HistoricP.infestans, collected from 1845–1889, were the first to diverge from all otherP.infestanspopulations. Modern South American populations diverged next followed by Mexican populations which showed later ancestry. Both populations were derived from historicP.infestans. Based on the time of divergence ofP.infestansfrom its closest relatives,P.andinaandP.betaceiin the Andean region, we consider the Andes to be the center of origin ofP.infestans, with modern globalization contributing to admixture betweenP.infestanspopulations today from Mexico, the Andes and Europe. 
    more » « less
  2. Abstract BackgroundTrypanosomaare protozoa parasites that infect animals and can cause economic losses in cattle production.Trypanosomalive in the blood and are transmitted by hematophagous insects, such as flies in the genusTabanus.Using ecological niche models, we explored the current geography of six commonTabanusspecies in Brazil, which are considered vectors ofTrypanosoma vivaxandTr. evansiin the Neotropics. MethodsWe used georeferenced data and biotic and abiotic variables integrated using a fundamental ecological niche modeling approach. Modeling results from sixTabanusspecies were used to identify risk areas ofTrypanosomatransmission in Latin America accounting for area predicted, landscape conditions, and density of livestock. We performed Jaccard, Schoener, and Hellinger metrics to indicate the ecological niche similarities of pairs ofTabanusspecies to identify known and likely vectors overlapping in distribution across geographies. ResultsOur results revealed significant ecological niche similarities for twoTabanusspecies (T. pungensandT. sorbillans), whereasT. triangulumandT. importunushave low ecological similarity. Ecological niche models predicted risk ofTrypanosomatransmission across Neotropical countries, with the highest risk in southern South America, Venezuela, and central Mexico. ConclusionsMore than 1.6 billion cattle and 38 million horses are under a threat category for infection risk. Furthermore, we identified specific areas and livestock populations at high risk of trypanosomiasis in Latin America. This study reveals the areas, landscapes, and populations at risk ofTrypanosomainfections in livestock in the Americas. Graphical Abstract 
    more » « less
  3. Abstract Supersonic isothermal turbulence is a common process in astrophysical systems. In this work, we explore the energy in such systems. We show that the conserved energy is the sum of the kinetic energy (K) and Helmholtz free energy (F). We develop analytic predictions for the probability distributions,P(F) andP(K), as well as their nontrivial joint distribution,P(F,K). We verify these predictions with a suite of driven turbulence simulations, finding excellent agreement. The turbulence simulations were performed at Mach numbers ranging from 1 to 8, and three modes of driving: purely solenoidal, purely compressive, and mixed. We find thatP(F) is discontinuous atF= 0, with the discontinuity increasing with Mach number and compressive driving.P(K) resembles a lognormal with a negative skew. The joint distribution,P(F,K), shows a bimodal distribution, with gas either existing at highFand highKor at lowFand lowK. 
    more » « less
  4. Millions of hibernating bats across North America have died from white-nose syndrome (WNS), an emerging disease caused by a psychrophilic (cold-loving) fungus,Pseudogymnoascus destructans, that invades their skin. Mechanisms ofP. destructansinvasion of bat epidermis remain obscure. Guided by our in vivo observations, we modeled hibernation with a newly generated little brown bat (Myotis lucifugus) keratinocyte cell line. We uncovered the stealth intracellular lifestyle ofP. destructans, which inhibits apoptosis of keratinocytes and spreads through the cells by two epidermal growth factor receptor (EGFR)–dependent mechanisms: active penetration during torpor and induced endocytosis during arousal. Melanin of endocytosedP. destructansblocks endolysosomal maturation, facilitatingP. destructanssurvival and germination after return to torpor. Blockade of EGFR abortsP. destructansentry into keratinocytes. 
    more » « less
  5. Summary Pseudoalteromonas luteoviolaceais a globally distributed marine bacterium that stimulates the metamorphosis of marine animal larvae, an important bacteria–animal interaction that can promote the recruitment of animals to benthic ecosystems. Recently, differentP.luteoviolaceaisolates have been shown to produce two stimulatory factors that can induce tubeworm and coral metamorphosis; Metamorphosis‐Associated Contractile structures (MACs) and tetrabromopyrrole (TBP) respectively. However, it remains unclear what proportion ofP.luteoviolaceaisolates possess the genes encoding MACs, and what phenotypic effect MACs and TBP have on other larval species. Here, we show that 9 of 19 sequencedP.luteoviolaceagenomes genetically encode both MACs and TBP. WhileP.luteoviolaceabiofilms producing MACs stimulate the metamorphosis of the tubewormHydroides elegans, TBP biosynthesis genes had no effect under the conditions tested. Although MACs are lethal to larvae of the cnidarianHydractinia symbiologicarpus,P.luteoviolaceamutants unable to produce MACs are capable of stimulating metamorphosis. Our findings reveal a hidden complexity of interactions between a single bacterial species, the factors it produces and two species of larvae belonging to different phyla. 
    more » « less